Changes in version 0.0.7 + FIX: error check for positive definite in `add_population_error` + FIX: correction when adding negative skew for continuous data (internal function: `skew_continuous`) + UPDATE: better ML population error in `add_population_error` (update from {bifactor}) + UPDATE: some optimizations to `add_population_error` + UPDATE: some optimiztaions to `NEST` Changes in version 0.0.6 + MOVE: `add_wording_effects` methods moved from `utils-latentFactoR` to `add_wording_effects-helpers` to facilitate ease of finding code (no observable changes to the user) + FIX: categories greater than 7 were not previously allowed (they are now) + FIX: correlations in `EKC` were not used appropriately and led to an error + UPDATE: switched on "Byte-Compile" (byte-compiles on our end and not when the user installs) Changes in version 0.0.5 + FIX: bug in skew when only providing 1 value + FIX: further correction to `EKC` (uses `cumsum(eigenvalues)` rather than `sum(eigenvalues)`) + ADD: `add_wording_effects` will add wording effects such as acquiescence, difficulty, random careless, straight line, or some combination of the four to a simulated factor model + ADD: `ESEM` to perform Exploratory Structural Equation Modeling using {lavaan} (allows wording effects to be estimated) + FIX: `factor_forest` uses raw data in `psych::fa.parallel` rather than correlation matrix + ADD: internal functions for computing effect sizes across conditions are included (see `simulation_helpers.R`) + ADD: skew in `add_local_dependence` is guaranteed to be same direction for locally dependent variables Changes in version 0.0.4 + FIX: correction to `EKC` (used `factor_forest`'s version of EKC which used reference values rather than eigenvalues); `EKC` uses eigenvalues whereas `factor_forest` uses reference (which was what the random forest model was trained on) + FIX: cross-loadings with population error are screened for communalities >= 0.80; communalities near 0.90 prior to population error would often get stuck and not converge + ADD: `skew` argument for continuous data Changes in version 0.0.3 + ADD: `add_population_error` will add population error, using {bifactor}, to a simulated factor model + ADD: `data_to_zipfs` to transform data to Zipf's distribution from `simulate_factors` + ADD: `obtain_zipfs_parameters` to obtain a dataset's best fitting Zipf's distribution parameters + ADD: `NEST` Next Eigenvalue Sufficiency Test to estimate dimensions + ADD: `estimate_dimensions` provides a single function to estimate dimensions using state-of-the-art methods: Exploratory Graph Analysis (EGA), Exploratory Factor Analysis with out-of-sample prediction (FSPE), Next Eigenvalue Sufficiency Test (NEST), parallel analysis (PA), and Factor Forest Changes in version 0.0.2 + UPDATE: skews for categories now include 6 categories + UPDATE: available skew increments are now 0.05 (were 0.50 previously) + ADD: `add_local_dependence` will add local dependence between variables from a simulated factor model Initial commit version 0.0.1