## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(emhawkes) ## ----------------------------------------------------------------------------- mu1 <- 0.3; alpha1 <- 1.2; beta1 <- 1.5 hspec1 <- new("hspec", mu = mu1, alpha = alpha1, beta = beta1) show(hspec1) ## ----warning=FALSE------------------------------------------------------------ set.seed(1107) res1 <- hsim(hspec1, size = 1000) summary(res1) ## ----------------------------------------------------------------------------- # first and third columns are the same cbind(res1$lambda[1:5], res1$lambda_component[1:5], mu1 + res1$lambda_component[1:5]) ## ----------------------------------------------------------------------------- # second and third columns are the same cbind(res1$lambda[1:5], res1$rambda[1:5], res1$lambda[1:5] + alpha1) ## ----------------------------------------------------------------------------- # By definition, the following two are equal: res1$lambda[2:6] mu1 + (res1$rambda[1:5] - mu1) * exp(-beta1 * res1$inter_arrival[2:6]) ## ----warning=FALSE------------------------------------------------------------ logLik(hspec1, inter_arrival = res1$inter_arrival) ## ----warning=FALSE------------------------------------------------------------ # initial value for numerical optimization mu0 <- 0.5; alpha0 <- 1.0; beta0 <- 1.8 hspec0 <- new("hspec", mu = mu0, alpha = alpha0, beta = beta0) # the intial values are provided through hspec mle <- hfit(hspec0, inter_arrival = res1$inter_arrival) summary(mle) ## ----------------------------------------------------------------------------- mu2 <- matrix(c(0.2), nrow = 2) alpha2 <- matrix(c(0.5, 0.9, 0.9, 0.5), nrow = 2, byrow = TRUE) beta2 <- matrix(c(2.25, 2.25, 2.25, 2.25), nrow = 2, byrow = TRUE) hspec2 <- new("hspec", mu=mu2, alpha=alpha2, beta=beta2) print(hspec2) ## ----------------------------------------------------------------------------- set.seed(1107) res2 <- hsim(hspec2, size=1000) summary(res2) ## ----------------------------------------------------------------------------- # Under bi-variate model, there are two types, 1 or 2. res2$type[1:10] ## ----------------------------------------------------------------------------- res2$N[1:3, ] ## ----------------------------------------------------------------------------- res2$lambda[1:3, ] ## ----------------------------------------------------------------------------- res2$lambda_component[1:3, ] ## ----------------------------------------------------------------------------- mu2[1] + rowSums(res2$lambda_component[1:5, c("lambda11", "lambda12")]) res2$lambda[1:5, "lambda1"] ## ----------------------------------------------------------------------------- inter_arrival2 <- res2$inter_arrival type2 <- res2$type ## ----------------------------------------------------------------------------- logLik(hspec2, inter_arrival = inter_arrival2, type = type2) ## ----warning=FALSE------------------------------------------------------------ hspec0 <- hspec2 mle <- hfit(hspec0, inter_arrival = inter_arrival2, type = type2) summary(mle) ## ----------------------------------------------------------------------------- coef(mle) ## ----------------------------------------------------------------------------- miscTools::stdEr(mle)