--- title: "Getting Started with MetaRVM" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Getting Started with MetaRVM} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5 ) ``` ## Introduction MetaRVM is a comprehensive R package for simulating respiratory virus epidemics using meta-population compartmental models. This vignette will guide you through the basic usage of the package. ## Installation You can install the development version of MetaRVM from GitHub: ```{r eval=FALSE} # install.packages("devtools") devtools::install_github("RESUME-Epi/MetaRVM") ``` ## Loading the Package ```{r setup, eval=FALSE} library(MetaRVM) library(ggplot2) options(odin.verbose = FALSE) ``` ## Basic Example This example shows how to run a basic meta-population simulation. The `metaRVM` package includes a set of example files in its `extdata` directory. To run the example, we first need to locate these files. The `system.file()` function in R is the recommended way to do this, as it will find the files wherever the package is installed. ```{r} # Locate the example YAML configuration file yaml_file <- system.file("extdata", "example_config.yaml", package = "MetaRVM") print(yaml_file) ``` The `yaml_file` variable now holds the full path to the example configuration file. This file is set up to use the other example data files (also in the `extdata` directory) with relative paths. Below is the content of the yaml file. ```yaml run_id: ExampleRun population_data: mapping: demographic_mapping_n24.csv initialization: population_init_n24.csv vaccination: vaccination_n24.csv mixing_matrix: weekday_day: m_weekday_day.csv weekday_night: m_weekday_night.csv weekend_day: m_weekend_day.csv weekend_night: m_weekend_night.csv disease_params: ts: 0.5 tv: 0.25 ve: 0.4 dv: 180 dp: 1 de: 3 da: 5 ds: 6 dh: 8 dr: 180 pea: 0.3 psr: 0.95 phr: 0.97 simulation_config: start_date: 01/01/2023 # m/d/Y length: 150 nsim: 1 ``` For a detailed explanation of all the configuration options, please see the `yaml-configuration.html` vignette. ## Running the Simulation Once we have the path to the configuration file, the simulation can be run using the `metaRVM()` function. ```{r, results='hide'} # Load the metaRVM library library(MetaRVM) # Run the simulation sim_out <- metaRVM(yaml_file) ``` ```{r} print(sim_out) head(sim_out$results) ``` For more details on running `metaRVM`, refer to the `running-a-simulation.html` vignette.