
grid Graphics

Paul Murrell

February 18, 2026

grid is a low-level graphics system which provides a great deal of control and flexibility
in the appearance and arrangement of graphical output. grid does not provide high-level
functions which create complete plots. What it does provide is a basis for developing such
high-level functions (e.g., the lattice and ggplot2 packages), the facilities for customising
and manipulating lattice output, the ability to produce high-level plots or non-statistical
images from scratch, and the ability to add sophisticated annotations to the output from
base graphics functions (see the gridBase package).

This document provides an introduction to the fundamental concepts underlying the grid

package: viewports, units, and graphical parameters. There are also several examples
to demonstrate what can be achieved and how to achieve it.

The description of the fundamental grid concepts is predicated on the following approach
to constructing a statistical graphic (plot). You must be able to:

1. create and control different graphical regions and coordinate systems.

2. control which graphical region and coordinate system graphical output goes into.

3. produce graphical output (lines, points, text, . . . ) including controlling its appearance
(colour, line type, line width, . . . ).

1 Creating and Controlling Graphics Regions and Coor-

dinate Systems

In grid there can be any number of graphics regions. A graphics region is referred to as
a viewport and is created using the viewport() function. A viewport can be positioned
anywhere on a graphics device (page, window, . . . ), it can be rotated, and it can be clipped
to. The following code describes a viewport which is centred within the page, and is half the
width of the page, one quarter of the height of the page, and rotated 45◦; Figure 1 shows a
diagram of this viewport.

> viewport(x = 0.5, y = 0.5, width = 0.5, height = 0.25, angle=45)

The object returned by the viewport() function is only a description of a graphics region.
A graphics region is only created on a graphics device when a viewport is “pushed” onto
that device. This is achieved using the pushViewport() function. Each device has only one
“current viewport” (by default this is the entire device surface), but it maintains a “tree”

1

https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=gridBase


of viewports that have been pushed. The current viewport is a node on the viewport tree.
The pushViewport() function adds a viewport as a leaf of the tree – the previous “current
viewport” becomes the parent of this leaf and the new leaf becomes the current viewport.
The popViewport() function prunes the current viewport (and all its children) from the tree
– the parent of the pruned leaf becomes the current viewport. The function upViewport()

acts like popViewport() in terms of setting the current viewport, but does not prune the
previous “current viewport”. The downViewport() function navigates down the tree to a
viewport which has been specified by name (it adds no new viewports to the tree). This
means that there is always only one graphics region selected to draw into, but it is possible
to return to a previous graphics region through the appropriate set of push/pop/up/down
operations.

As an example, the following code creates a graphics region in the top-left corner of the
page using pushViewport(). This viewport is given the name "vp1". It then does some
drawing and calls upViewport() to return to the root of the viewport tree. Next, it creates
another region in the bottom-right corner of the page (again using pushViewport()) and
does some drawing there. Finally, it performs an upViewport() to the root of the tree and
a downViewport() to return to the first graphics region and does some more drawing there
(see Figure 2).

> grid.rect(gp = gpar(lty = "dashed"))

> vp1 <- viewport(x = 0, y = 0.5, w = 0.5, h = 0.5,

+ just = c("left", "bottom"), name = "vp1")

> vp2 <- viewport(x = 0.5, y = 0, w = 0.5, h = 0.5,

+ just = c("left", "bottom"))

> pushViewport(vp1)

> grid.rect(gp = gpar(col = "grey"))

> grid.text("Some drawing in graphics region 1", y = 0.8)

> upViewport()

> pushViewport(vp2)

> grid.rect(gp = gpar(col = "grey"))

> grid.text("Some drawing in graphics region 2", y = 0.8)

> upViewport()

> downViewport("vp1")

> grid.text("MORE drawing in graphics region 1", y = 0.2)

> popViewport()

When several viewports are pushed onto the viewport tree, leaf viewports are located and
sized within the context of their parent viewports. The following code gives an example;
a viewport is defined which is one-quarter the size of its parent (half the width and half
the height), and this viewport is pushed twice. The first time it gets pushed the parent is
the root of the viewport tree (which is the entire device) so it is quarter of the size of the
page. The second time the viewport is pushed, it is quarter of the size of its parent viewport.
Figure 3 shows the output of these commands.

> grid.rect(gp = gpar(lty = "dashed"))

> vp <- viewport(width = 0.5, height = 0.5)

> pushViewport(vp)

> grid.rect(gp = gpar(col = "grey"))

> grid.text("quarter of the page", y = 0.85)

> pushViewport(vp)

> grid.rect()

2



0

1

0

1

0.
5n

pc

0.
25

np
c

0.5npc

0.
5n

pc

Figure 1: A diagram of a simple grid viewport (produced using the grid.show.viewport()
function).

Some drawing in graphics region 1

Some drawing in graphics region 2

MORE drawing in graphics region 1

Figure 2: Defining and drawing in multiple graphics regions.

3



> grid.text("quarter of the\nprevious viewport")

> popViewport(2)

Each viewport has a number of coordinate systems available. The full set is described in
Table 1, but there are four main types: absolute coordinates (e.g., "inches", "cm") allow
locations and sizes in terms of physical coordinates – there is no dependence on the size of
the page; normalised coordinates (e.g., "npc") allow locations and sizes as a proportion of
the page size (or the current viewport); relative coordinates (i.e., "native") allow locations
and sizes relative to a user-defined set of x- and y-ranges; referential coordinates (e.g.,
"strwidth") where locations and sizes are based on the size of some other graphical object.

It is possible to specify the coordinate system for relative coordinates, but all other coordi-
nate systems are implicitly defined based on the location and size of the viewport and/or
the size of other graphical objects.

2 Directing Graphics Output into Different

Graphics Regions and Coordinate Systems

Graphics output is always relative to the current viewport (on the current device). Selecting
which region you want is a matter of push/pop/up/downing the appropriate viewports.
However, that is not all; every viewport has a number of coordinate systems associated with
it, so it is also necessary to select the coordinate system that you want to work with.

The selection of which coordinate system to use within the current viewport is made using
the unit() function. The unit() function creates an object which is a combination of a
value and a coordinate system (plus some extra information for certain coordinate systems).
Here are some examples from the help(unit) page:

> unit(1, "npc")

[1] 1npc

> unit(1:3/4, "npc")

[1] 0.25npc 0.5npc 0.75npc

> unit(1:3/4, "npc")[2]

[1] 0.5npc

> unit(1:3/4, "npc") + unit(1, "inches")

[1] sum(0.25npc, 1inches) sum(0.5npc, 1inches)

[3] sum(0.75npc, 1inches)

> min(unit(0.5, "npc"), unit(1, "inches"))

[1] min(0.5npc, 1inches)

4



Coordinate

System Name Description

"npc" Normalised Parent Coordinates. Treats the
bottom-left corner of the current viewport as the
location (0, 0) and the top-right corner as (1, 1).

"native" Locations and sizes are relative to the x- and y-
scales for the current viewport.

"inches" Locations and sizes are in terms of physical inches.
For locations, (0, 0) is at the bottom-left of the
viewport.

"cm" Same as "inches", except in centimetres.
"mm" Millimetres.
"points" Points. There are 72.27 points per inch.
"bigpts" Big points. There are 72 big points per inch.
"picas" Picas. There are 12 points per pica.
"dida" Dida. 1157 dida equals 1238 points.
"cicero" Cicero. There are 12 dida per cicero.
"scaledpts" Scaled points. There are 65536 scaled points per

point.
"char" Locations and sizes are specified in terms of mul-

tiples of the current nominal fontheight.
"lines" Locations and sizes are specified in terms of mul-

tiples of the height of a line of text (dependent
on both the current fontsize and the current
lineheight).

"snpc" Square Normalised Parent Coordinates. Loca-
tions and size are expressed as a proportion of
the smaller of the width and height of the cur-
rent viewport.

"strwidth" Locations and sizes are expressed as multiples of
the width of a given string (dependent on the
string and the current fontsize).

"strheight" Locations and sizes are expressed as multiples of
the height of a given string (dependent on the
string and the current fontsize).

"grobwidth" Locations and sizes are expressed as multiples of
the width of a given graphical object (dependent
on the current state of the graphical object).

"grobheight" Locations and sizes are expressed as multiples of
the height of a given graphical object (dependent
on the current state of the graphical object).

Table 1: The full set of coordinate systems available in grid viewports.

5



> unit.c(unit(0.5, "npc"), unit(2, "inches") + unit(1:3/4, "npc"),

+ unit(1, "strwidth", "hi there"))

[1] 0.5npc sum(2inches, 0.25npc)

[3] sum(2inches, 0.5npc) sum(2inches, 0.75npc)

[5] 1strwidth

Notice that unit objects are treated much like numeric vectors. You can index a unit object,
it is possible to do simple arithmetic (including min and max), and there are several unit-
versions of common functions (e.g., unit.c, unit.rep, and unit.length; unit.pmin, and
unit.pmax)).

grid functions that have arguments specifying locations and sizes typically assume a default
coordinate system is being used. Most often this default is "npc". In other words, if a
raw numeric value, x, is specified this is implicitly taken to mean unit(x, "npc"). The
viewport() function is one that assumes "npc" coordinates, so in all of the viewport exam-
ples to this point, we have only used "npc" coordinates to position viewports within the page
or within each other. It is also possible to position viewports using any of the coordinate
systems described in Table 1.

As an example, the following code makes use of "npc", "native", "inches", and "strwidth"

coordinates. It first pushes a viewport with a user-defined x-scale, then pushes another view-
port which is centred at the x-value 60 and half-way up the first viewport, and is 3 inches
high1 and as wide as the text “coordinates for everyone”. Figure 4 shows the resulting output.

> pushViewport(viewport(y = unit(3, "lines"), width = 0.9, height = 0.8,

+ just = "bottom", xscale = c(0, 100)))

> grid.rect(gp = gpar(col = "grey"))

> grid.xaxis()

> pushViewport(viewport(x = unit(60, "native"), y = unit(0.5, "npc"),

+ width = unit(1, "strwidth", "coordinates for everyone"),

+ height = unit(3, "inches")))

> grid.rect()

> grid.text("coordinates for everyone")

> popViewport(2)

1If you want to check the figure, the scaling factor is 3.5/6 (i.e., the rectangle in the figure should be
1.75" or 3.94cm high).

6



quarter of the page

quarter of the
previous viewport

Figure 3: The result of pushing the same viewport onto the viewport stack twice.

0 20 40 60 80 100

coordinates for everyone

Figure 4: A viewport positioned using a variety of coordinate systems.

7



Figure 5: A viewport positioned using a layout.

2.1 Layouts

grid provides an alternative method for positioning viewports within each other based on
layouts2. A layout may be specified for any viewport. Any viewport pushed immediately
after a viewport containing a layout may specify its location with respect to that layout. In
the following simple example, a viewport is pushed with a layout with 4 rows and 5 columns,
then another viewport is pushed which occupies the second and third columns of the third
row of the layout.

> pushViewport(viewport(layout = grid.layout(4, 5)))

> grid.rect(gp = gpar(col = "grey"))

> grid.segments(c(1:4/5, rep(0, 3)), c(rep(0, 4), 1:3/4),

+ c(1:4/5, rep(1, 3)), c(rep(1, 4), 1:3/4),

+ gp = gpar(col = "grey"))

> pushViewport(viewport(layout.pos.col = 2:3, layout.pos.row = 3))

> grid.rect(gp = gpar(lwd = 3))

> popViewport(2)

Layouts introduce a special sort of unit called "null". These can be used in layouts to specify
relative column-widths or row-heights. In the following, slightly more complex, example, the
layout specifies something similar to a standard plot arrangement; there are bottom and left
margins 3 lines of text wide, top and right margins 1cm wide, and two rows and columns
within these margins where the bottom row is twice the height of the top row (see Figure
6).

2The primary reference for layouts is [1]. Layouts in grid represent an extension of the idea to allow a
greater range of units for specifying row heights and column widths. grid also differs in the way that children
of the layout specify their location within the layout.

8



(1, 1)1cm

3lines

(1, 2)

1null

(1, 3)

1null

(1, 4) 1cm

1cm

(2, 1)1null (2, 2) (2, 3) (2, 4) 1null

(3, 1)2null (3, 2) (3, 3) (3, 4) 2null

(4, 1)3lines

3lines

(4, 2)

1null

(4, 3)

1null

(4, 4)

1cm

3lines

Figure 6: A more complex layout.

> grid.show.layout(grid.layout(4, 4, widths = unit(c(3, 1, 1, 1),

+ c("lines", "null", "null", "cm")),

+ heights = c(1, 1, 2, 3),

+ c("cm", "null", "null", "lines")))

9



3 Producing Graphics Output

grid provides a standard set of graphical primitives: lines, text, points, rectangles, polygons,
and circles. There are also two higher level components: x- and y-axes. Table 2 lists the
grid functions that produce these primitives.

NOTE: all of these graphical primitives are available in all graphical regions and coordinate
systems.

There used to be (prior to R 2.3.0) a separate grid.arrows() function, but this has been
superseded by an arrow argument to the line-drawing primitives (lines, segments, line-to).

grid.text Can specify angle of rotation.
grid.rect

grid.circle

grid.polygon

grid.points Can specify type of plotting symbol.
grid.lines

grid.segments

grid.grill Convenience function for drawing grid lines
grid.move.to

grid.line.to

grid.xaxis Top or bottom axis
grid.yaxis Left or right axis

Table 2: grid graphical primitives.

3.1 Controlling the Appearance of Graphics Output

grid recognises a fixed set of graphical parameters for modifying the appearance of graphical
output (see Table 3).

col colour of lines, text, . . .
fill colour for filling rectangles, circles, polygons, . . .
lwd line width
lty line type
fontsize The size of text (in points)
fontface The font face (bold, italic, . . . )
fontfamily The font family

Table 3: grid graphical parameters.

Graphical parameter settings may be specified for both viewports and graphical objects.
A graphical parameter setting for a viewport will hold for all graphical output within that
viewport and for all viewports subsequently pushed onto the viewport stack, unless the
graphical object or viewport specifies a different parameter setting.

A description of graphical parameter settings is created using the gpar() function, and this
description is associated with a viewport or a graphical object via the gp argument. The
following code demonstrates the effect of graphical parameter settings (see Figure 7).

10



This text and the inner rectangle
have specified their own gpar settings

This text and the outer rectangle
accept the gpar settings of the viewport

Figure 7: The effect of different graphical parameter settings.

> pushViewport(viewport(gp = gpar(fill = "grey", fontface = "italic")))

> grid.rect()

> grid.rect(width = 0.8, height = 0.6, gp = gpar(fill = "white"))

> grid.text(paste("This text and the inner rectangle",

+ "have specified their own gpar settings", sep = "\n"),

+ y = 0.75, gp = gpar(fontface = "plain"))

> grid.text(paste("This text and the outer rectangle",

+ "accept the gpar settings of the viewport", sep = "\n"),

+ y = 0.25)

> popViewport()

11



4 Examples

The remaining sections provide some code examples of the use of grid.

The first example constructs a simple scatterplot from first principles. Just like in base
graphics, it is quite straightforward to create a simple plot by hand. The following code
produces the equivalent of a standard plot(1:10) (see Figure 8).

> grid.rect(gp = gpar(lty = "dashed"))

> x <- y <- 1:10

> pushViewport(plotViewport(c(5.1, 4.1, 4.1, 2.1)))

> pushViewport(dataViewport(x, y))

> grid.rect()

> grid.xaxis()

> grid.yaxis()

> grid.points(x, y)

> grid.text("1:10", x = unit(-3, "lines"), rot = 90)

> popViewport(2)

Now consider a more complex example, where we create a barplot with a legend (see Figure
9). There are two main parts to this because grid has no predefined barplot function; the
construction of the barplot will itself be instructive, so we will start with just that.

The data to be plotted are as follows: we have four measures to represent at four levels; the
data are in a matrix with the measures for each level in a column.

> barData <- matrix(sample(1:4, 16, replace = TRUE), ncol = 4)

We will use colours to differentiate the measures.

> boxColours <- 1:4

We create the barplot within a function so that we can easily reproduce it when we combine
it with the legend.

> bp <- function(barData) {

+ nbars <- dim(barData)[2]

+ nmeasures <- dim(barData)[1]

+ barTotals <- rbind(rep(0, nbars), apply(barData, 2, cumsum))

+ barYscale <- c(0, max(barTotals)*1.05)

+ pushViewport(plotViewport(c(5, 4, 4, 1),

+ yscale = barYscale,

+ layout = grid.layout(1, nbars)))

+ grid.rect()

+ grid.yaxis()

+ for (i in 1:nbars) {

+ pushViewport(viewport(layout.pos.col = i, yscale = barYscale))

+ grid.rect(x = rep(0.5, nmeasures),

+ y = unit(barTotals[1:nmeasures, i], "native"),

+ height = unit(diff(barTotals[,i]), "native"),

12



+ width = 0.8, just = "bottom", gp = gpar(fill = boxColours))

+ popViewport()

+ }

+ popViewport()

+ }

Now we turn our attention to the legend. We need some labels and we will enforce the
constraint that the boxes in the legend should be 0.5" square:

> legLabels <- c("Group A", "Group B", "Group C", "Something Longer")

> boxSize <- unit(0.5, "inches")

The following draws the legend elements in a column, with each element consisting of a box
with a label beneath.

> leg <- function(legLabels) {

+ nlabels <- length(legLabels)

+ pushViewport(viewport(layout = grid.layout(nlabels, 1)))

+ for (i in 1:nlabels) {

+ pushViewport(viewport(layout.pos.row = i))

+ grid.rect(width = boxSize, height = boxSize, just = "bottom",

+ gp = gpar(fill = boxColours[i]))

+ grid.text(legLabels[i], y = unit(0.5, "npc") - unit(1, "lines"))

+ popViewport()

+ }

+ popViewport()

+ }

Now that we have the two components, we can arrange them together to form a complete
image. Notice that we can perform some calculations to make sure that we leave enough
room for the legend, including 1 line of text as left and right margins. We also impose top
and bottom margins on the legend to match the plot margins.

> grid.rect(gp = gpar(lty = "dashed"))

> legend.width <- max(unit(rep(1, length(legLabels)),

+ "strwidth", as.list(legLabels)) +

+ unit(2, "lines"),

+ unit(0.5, "inches") + unit(2, "lines"))

> pushViewport(viewport(layout = grid.layout(1, 2,

+ widths = unit.c(unit(1,"null"), legend.width))))

> pushViewport(viewport(layout.pos.col = 1))

> bp(barData)

> popViewport()

> pushViewport(viewport(layout.pos.col = 2))

> pushViewport(plotViewport(c(5, 0, 4, 0)))

> leg(legLabels)

> popViewport(3)

13



2 4 6 8 10

2

4

6

8

10

1:
10

Figure 8: The grid equivalent of plot(1:10).

0

2

4

6

8

10

12

Group A

Group B

Group C

Something Longer

Figure 9: A barplot plus legend from first principles using grid.

14



5 grid and lattice

The lattice package is built on top of grid and provides a quite sophisticated example of
writing high-level plotting functions using grid. Because lattice consists of grid calls, it is
possible to both add grid output to lattice output, and lattice output to grid output.

The “grid” vignette in the lattice package provides some examples.

References

[1] Paul Murrell. Layouts: A mechanism for arranging plots on a page. Journal of Compu-

tational and Graphical Statistics, 8:121–134, 1999.

15

https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice

	Creating and Controlling Graphics Regions and Coordinate Systems
	Directing Graphics Output into Different Graphics Regions and Coordinate Systems
	Layouts

	Producing Graphics Output
	Controlling the Appearance of Graphics Output

	Examples
	grid and lattice

