
Display Lists in grid

Paul Murrell

February 17, 2026

A display list is a record of drawing operations. It is used to redraw graphics output when
a graphics window is resized, when graphics output is copied from one device to another,
and when graphics output is edited (via grid.edit).

There are two display lists that can be used when working with grid. R’s graphics engine
maintains a display list and grid maintains its own display list. The former is maintained
at the C code level and records both base graphics output and grid graphics output. The
latter is maintained at the R code level and only records grid output.

In standard usage, the graphics engine’s display list is used to redraw when a window is
resized and when copying between devices. grid’s display list is used for redrawing when
editing grid output.

There are two main problems with this standard usage:

1. The graphics engine display list only records graphics output; none of the calculations
leading up to producing the output are recorded. This particularly impacts on plots
which perform calculations based on the physical dimensions of the device – an example
is the legend function which performs calculations in order to arrange the elements of
the legend. The effect can be seen from any example which uses the legend function.
Try running example(legend) then resize the device (make it quite tall and thin or
quite wide and fat); the legend will start to look pretty sick.

NOTE: that this is a problem with the graphics engine display list – it is not specific to
grid. In fact, much of grid’s behaviour is protected from this problem because things
like grid units are “declarative” and will be re-evaluated on each redraw. However,
there are situations where grid output can be afflicted, in particular, whenever the
convertUnit() function (or one of its variants) is used (the help file for convertUnit()
gives an example).

A situation where this problem becomes very relevant for grid output is when the
gridBase package is used. This is a situation where lots of calculations are performed
in order to align base and grid output, but these calculations are not recorded on the
graphics engine display list, so if the device is resized the output will become very
yukky.

2. grid’s display list does not record base graphics output1 so if both base and grid output
appear on the same device then the result of editing will not redraw the base output.
The following code provides a simple example:

1This is not quite true; it is possible to include base graphics output on the grid display list as we will

see later.

1

https://CRAN.R-project.org/package=gridBase

> plot(1:10)

> par(new = TRUE)

> grid.rect(width = 0.5, height = 0.5, gp = gpar(lwd = 3), name = "gr")

>

2 4 6 8 10

2
4

6
8

Index

1:
10

> grid.edit("gr", gp = gpar(col = "red", lwd = 3))

After the grid.edit, the rectangle has been redrawn, but the base plot has not.

Saving calculations on the graphics engine display list

and saving base graphics on the grid display list

Both of the problems described in the previous section can be avoided by using a drawDetails()
method in grid. When a grid grob is drawn, the drawDetails method for that grob is called;

2

if calculations are put within a drawDetails method, then the calculations will be performed
every time the grob is drawn.

This means that it is possible, for example, to use convertUnit() and have the result
consistent across device resizes or copies2. This next piece of code is an example where the
output becomes inconsistent when the device is resized. We specify a width for the rectangle
in inches, but convert it (gratuitously) to NPC coordinates – when the device is resized, the
NPC coordinates will no longer correspond to 1”.

> grid.rect(width = convertWidth(unit(1, "inches"), "npc"))

The next piece of code demonstrates that, if we place the calculations within a drawDetails

method, then the output remains consistent across device resizes and copies.

> drawDetails.myrect <- function(x, recording) {

+ gr <- rectGrob(width = convertWidth(unit(1, "inches"), "npc"))

+ grid.draw(gr)

+ }

> grid.draw(grob(cl = "myrect"))

The next example shows that a drawDetails() method can also be used to save base
graphics output on the grid display list. This example uses gridBase to combine base and
grid graphics output. Here I replicate the last example from the gridBase vignette – a set
of base pie charts within grid viewports within a base plot. In this case, I can produce all of
the grobs required in the normal manner – their locations and sizes are not based on special
calculations3.

> x <- c(0.88, 1.00, 0.67, 0.34)

> y <- c(0.87, 0.43, 0.04, 0.94)

> z <- matrix(runif(4*2), ncol = 2)

> maxpiesize <- unit(1, "inches")

> totals <- apply(z, 1, sum)

> sizemult <- totals/max(totals)

> gs <- segmentsGrob(x0 = unit(c(rep(0, 4), x),

+ rep(c("npc", "native"), each = 4)),

+ x1 = unit(c(x, x), rep("native", 8)),

+ y0 = unit(c(y, rep(0, 4)),

+ rep(c("native", "npc"), each = 4)),

+ y1 = unit(c(y, y), rep("native", 8)),

+ gp = gpar(lty = "dashed", col = "grey"))

> gr <- rectGrob(gp = gpar(col = "grey", fill = "white", lty = "dashed"))

What is important is that I place the calls to the gridBase functions within the drawDetails
method so that they are performed every time the grob is drawn and the calls to the base
graphics functions are in here too so that they are called for every redraw.

> drawDetails.pieplot <- function(x, recording) {

+ plot(xx, xy, xlim = c(-0.2, 1.2), ylim = c(-0.2, 1.2), type = "n")

2In each of the examples that follow, you should execute the example code, resize the device to see any

inconsistency, then close the device before trying the next example.
3The example is wrapped inside a check for whether the gridBase package is installed so that the code

will still “run” on systems without gridBase.

3

https://CRAN.R-project.org/package=gridBase
https://CRAN.R-project.org/package=gridBase
https://CRAN.R-project.org/package=gridBase
https://CRAN.R-project.org/package=gridBase
https://CRAN.R-project.org/package=gridBase

+ vps <- baseViewports()

+ pushViewport(vps$inner, vps$figure, vps$plot, recording = FALSE)

+ grid.draw(x$gs, recording = FALSE)

+ for (i in 1:4) {

+ pushViewport(viewport(x = unit(x$x[i], "native"),

+ y = unit(x$y[i], "native"),

+ width = x$sizemult[i]*x$maxpiesize,

+ height = x$sizemult[i]*x$maxpiesize),

+ recording = FALSE)

+ grid.draw(x$gr, recording = FALSE)

+ par(plt = gridPLT(), new = TRUE)

+ pie(x$z[i,], radius = 1, labels = rep("", 2))

+ popViewport(recording = FALSE)

+ }

+ popViewport(3, recording = FALSE)

+ }

The “pie plot” is created by assembling the component grobs into a collective grob of the
appropriate class; the drawDetails method takes care of actually producing the output.

> if (suppressWarnings(require("gridBase", quietly = TRUE))) {

+ grid.draw(grob(x = x, y = y, z = z,

+ maxpiesize = maxpiesize, sizemult = sizemult,

+ gs = gs, gr = gr, cl = "pieplot"))

+ }

The output from this example can be resized safely; grid handles all of the redrawing,
and performs all of the actions within the drawDetails method for each redraw, including
redrawing the base graphics output!

As a final example, we will harness the grid display list purely to achieve consistency in base
graphics output. The following reproduces the last example from the legend() help page,
but produces output which can be resized without the legend going crazy.

> drawDetails.mylegend <- function(x, recording) {

+ x <- 0:64/64

+ y <- sin(3*pi*x)

+ plot(x, y, type = "l", col = "blue",

+ main = "points with bg & legend(*, pt.bg)")

+ points(x, y, pch = 21, bg = "white")

+ legend(.4,1, "sin(c x)", pch = 21, pt.bg = "white", lty = 1, col = "blue")

+ }

> grid.draw(grob(cl = "mylegend"))

4

