A B C D E F G I K L M N P Q R S T U V W
| aic | Akaike Information Criterion (AIC) |
| analyse_stable_distribution | Perform full stability analysis and export results |
| bayesian_mixture_model | Bayesian mixture model using normal components (simplified) |
| bic | Bayesian Information Criterion (BIC) |
| build_mcculloch_interpolators | Build interpolation functions from McCulloch table |
| calculate_log_likelihood | Calculate simplified log-likelihood |
| CDF | Estimate stable distribution parameters using classical ECF regression |
| clip | Clip values between lower and upper bounds |
| compare_em_vs_em_gibbs | Compare standard EM and EM with Gibbs sampling using kernel ECF |
| compare_estimators_on_simulations | Compare MLE, ECF, and McCulloch estimators on simulated data |
| compare_methods_across_configs | Compare McCulloch, ECF, and MLE methods across parameter configurations |
| compare_methods_with_gibbs | Compare estimation methods with and without Gibbs sampling |
| compute_model_metrics | Compute log-likelihood, AIC, and BIC for alpha-stable model |
| compute_quantile_ratios | Compute McCulloch quantile ratios from sample data |
| compute_serial_interval | Compute serial interval from CSV file |
| cosine_exp_ralpha | Cosine exponential function |
| cosine_log_weighted_exp_ralpha | Cosine-log-weighted exponential with r^(-alpha) term |
| DONNEE_with_serial_interval | Example serial interval data |
| ecf_components | Extract magnitude and phase components from ECF |
| ecf_empirical | Compute empirical characteristic function |
| ecf_estimate_all | Estimate all stable parameters from empirical characteristic function |
| ecf_fn | Empirical Characteristic Function |
| ecf_regression | Estimate stable parameters using weighted ECF regression |
| empirical_r0 | Empirical R0 estimation using growth model |
| em_alpha_stable | EM algorithm for alpha-stable mixture |
| em_estimate_stable_from_cdf | EM algorithm for mixture of alpha-stable distributions using CDF-based ECF |
| em_estimate_stable_from_cdf_with_gibbs | EM algorithm for alpha-stable mixture using CDF-based ECF and Gibbs M-step |
| em_estimate_stable_kernel_ecf | EM algorithm for mixture of alpha-stable distributions using kernel ECF |
| em_estimate_stable_kernel_ecf_with_gibbs | EM algorithm for alpha-stable mixture using kernel ECF and Gibbs M-step |
| em_estimate_stable_recursive_ecf | EM algorithm for mixture of alpha-stable distributions using recursive ECF |
| em_estimate_stable_recursive_ecf_with_gibbs | EM algorithm for alpha-stable mixture using recursive ECF and Gibbs M-step |
| em_estimate_stable_weighted_ols | EM algorithm for mixture of alpha-stable distributions using weighted OLS |
| em_estimate_stable_weighted_ols_with_gibbs | EM algorithm for alpha-stable mixture using weighted OLS and Gibbs M-step |
| em_estimation_mixture | EM algorithm for two-component Gaussian mixture |
| em_fit_alpha_stable_mixture | EM algorithm for two-component alpha-stable mixture using MLE |
| em_stable_mixture | EM algorithm for alpha-stable mixture using a custom estimator |
| ensure_positive_scale | Ensure positive scale parameter |
| estimate_alpha_gamma | Estimate alpha and gamma from ECF modulus |
| estimate_beta_delta | Estimate beta and delta from ECF phase |
| estimate_mixture_params | Estimate mixture of two stable distributions |
| estimate_stable_from_cdf | Estimate stable parameters using CDF-based ECF regression |
| estimate_stable_kernel_ecf | Estimate stable parameters using kernel-based ECF method |
| estimate_stable_params | Estimate single stable distribution parameters |
| estimate_stable_r | Estimate stable parameters using method of moments |
| estimate_stable_recursive_ecf | Estimate stable parameters using recursive ECF method |
| estimate_stable_weighted_ols | Estimate stable parameters using weighted OLS on recursive ECF |
| est_r0_ml | Estimate R0 using maximum likelihood |
| est_r0_mle | MLE estimation of R0 using generation time |
| eta0 | Helper function for eta0 computation |
| eta_func | General eta function |
| evaluate_estimation_method | Evaluate estimation method using MSE over multiple trials |
| evaluate_fit | Evaluate fit quality using RMSE and log-likelihood |
| export_analysis_report | Export analysis report to JSON and Excel |
| false_position_update | False position method update step |
| fast_integrate | Fast numerical integration using trapezoidal rule |
| fit_alpha_stable_mle | Fit Alpha-Stable Distribution using MLE (L-BFGS-B) |
| fit_mle_mixture | Fit MLE Mixture of Two Stable Distributions |
| fit_stable_ecf | Estimate stable parameters using filtered and weighted ECF regression |
| generate_alpha_stable_mixture | Generate samples from a predefined alpha-stable mixture |
| generate_mcculloch_table | Generate McCulloch lookup table from simulated stable samples |
| generate_mixture_data | Simulates a mixture of alpha-stable distributions with randomly sampled parameters. |
| generate_synthetic_data | Generate synthetic data from two alpha-stable components |
| gibbs_sampler | Gibbs sampler for Gaussian mixture model |
| grad_loglik_alpha | Log-likelihood gradient with respect to alpha |
| grad_loglik_beta | Log-likelihood gradient with respect to beta |
| grad_loglik_delta | Log-likelihood gradient with respect to delta (scale) |
| grad_loglik_omega | Log-likelihood gradient with respect to omega (location) |
| Im | Imaginary part of the ECF integral |
| integrate_cosine | Integrate cosine exponential |
| integrate_cosine_log_weighted | Integrate cosine-log-weighted exponential |
| integrate_function | Robust integration helper function |
| integrate_sine | Integrate sin exponential |
| integrate_sine_log_weighted | Integrate sine-log-weighted exponential |
| integrate_sine_r_weighted | Integrate sine-r-weighted exponential |
| integrate_sine_weighted | Integration wrappers for specific integrands |
| Int_Im | Integrate imaginary component over \mathbb{R} |
| Int_Re | Integrate real component over \mathbb{R} |
| kde_bandwidth_plugin | KDE bandwidth selection using plugin method |
| log_likelihood_mixture | Log-likelihood for mixture of stable distributions |
| L_stable | Negative log-likelihood for stable distribution using dstable |
| Max_vrai | Maximum likelihood estimation using Nelder-Mead |
| mcculloch_lookup_estimate | Estimate stable parameters using McCulloch lookup |
| mcculloch_quantile_init | Initialization using McCulloch quantile method |
| metropolis_hastings | Metropolis-Hastings MCMC for stable mixture clustering |
| mixture_stable_pdf | Mixture of two stable PDFs |
| mle_estimate | Simple MLE estimation with default starting values |
| mock_gibbs_sampling | Mock Gibbs sampling for alpha-stable mixture estimation |
| mock_lookup_alpha_beta | Mock lookup for alpha and beta (fallback) |
| negative_log_likelihood | Negative log-likelihood for single stable distribution |
| normalized_grad_alpha | Normalized gradient for alpha parameter Computes the normalized gradient of the log-likelihood with respect to the alpha parameter over a set of observations. This is useful for optimization routines where scale-invariant updates are preferred. |
| normalized_objective_beta | Normalized objective for beta parameter |
| normalized_objective_delta | Normalized objective for delta parameter |
| normalized_objective_omega | Normalized objective for omega parameter |
| N_epanechnikov | Epanechnikov kernel |
| N_gaussian | Gaussian kernel |
| N_uniform | Uniform kernel |
| plot_comparison | Compare EM-estimated mixture with a non-optimized reference model |
| plot_distributions | Plot histogram with normal and stable PDF overlays |
| plot_effective_reproduction_number | Plot effective reproduction number (Re) over time |
| plot_final_mixture_fit | Plot final fitted mixture of alpha-stable distributions |
| plot_fit_vs_true | Plot true vs estimated mixture density |
| plot_fit_vs_true_methods | Compare estimated mixture densities from two methods against the true density |
| plot_method_comparison | Plot RMSE and Log-Likelihood comparison across methods |
| plot_mixture | Plot mixture of two alpha-stable distributions |
| plot_mixture_fit | Plot mixture fit with individual components |
| plot_real_mixture_fit | Plot fitted mixture on real dataset |
| plot_results | Plot posterior mixture density from MCMC samples |
| plot_trace | Plot trace of a parameter across MCMC iterations |
| plot_vs_normal_stable | Plot comparison between normal and stable distributions |
| qcv_stat | QCV statistic for tail heaviness |
| Re | Real part of the ECF integral |
| recursive_weight | Recursive weight function |
| robust_ecf_regression | Estimate stable parameters using robust ECF regression |
| robust_mle_estimate | Robust MLE estimation with multiple starting points |
| rstable | Generate random samples from stable distribution |
| RT | Compute effective reproduction number Rt |
| run_all_estimations | Run all EM-based estimations without Gibbs sampling (CRAN-safe) |
| run_estimations_with_gibbs | Run all EM-based estimations with Gibbs sampling (CRAN-safe) |
| r_stable_pdf | Robust stable PDF computation |
| safe_integrate | Safe integration wrapper with multiple fallback strategies |
| simple_em_real | Simple 2-component EM using ECF initialization |
| simulate_mixture | Simulate mixture data from alpha-stable components |
| sine_exp_ralpha | Sine exponential function |
| sine_log_weighted_exp_ralpha | Sine-log-weighted exponential with r^(-alpha) term |
| sine_r_weighted_exp_ralpha | Sine-r-weighted exponential function |
| sine_weighted_exp_ralpha | Sine-weighted exponential with r^alpha term |
| skew_kurtosis | Calculate skewness and kurtosis |
| stable_fit_init | Initialize stable distribution parameters |
| TableS2_serial_interval_mean_ | Example transmission pair data with mean serial interval |
| test_normality | Test normality using multiple statistical tests |
| unpack_params | Helper function to unpack parameters |
| validate_params | Validate and clip parameters for stable distribution |
| wasserstein_distance_mixture | Wasserstein distance between two mixture distributions |