
Package ‘dbi.table’
February 4, 2025

Type Package

Title Database Queries Using 'data.table' Syntax

Version 1.0.3

Depends R (>= 3.6.0)

Imports DBI, bit64, dbplyr, methods, rlang, stringi, utils

Suggests RMariaDB, RPostgres, RSQLite, data.table, duckdb, testthat
(>= 3.0.0), knitr, rmarkdown

Description Query database tables over a 'DBI' connection using 'data.table' syntax.
Attach database schemas to the search path. Automatically merge using foreign
key constraints.

License MPL-2.0

URL https://github.com/kjellpk/dbi.table

BugReports https://github.com/kjellpk/dbi.table/issues

VignetteBuilder knitr

Encoding UTF-8

Config/testthat/edition 3

RoxygenNote 7.3.2

NeedsCompilation no

Author Kjell P. Konis [aut, cre],
Luis Rocha [ctb] (Chinook Database - see example_files/LICENSE)

Maintainer Kjell P. Konis <kjellk@gmail.com>

Repository CRAN

Date/Publication 2025-02-04 03:30:02 UTC

Contents
dbi.table-package . 2
as.data.frame . 4
as.dbi.table . 5

1

https://github.com/kjellpk/dbi.table
https://github.com/kjellpk/dbi.table/issues

2 dbi.table-package

csql . 6
dbExecute,dbi.catalog,SQL-method . 6
dbi.attach . 8
dbi.catalog . 9
example_databases . 9
merge . 10
reference.test . 11
sql.join . 13

Index 14

dbi.table-package DBI Table

Description

A dbi.table is a data structure that describes a SQL query (called the dbi.table’s underlying SQL
query). This query can be manipulated using data.table’s [i, j, by] syntax.

Usage

dbi.table(conn, id)

S3 method for class 'dbi.table'
x[i, j, by, nomatch = NA, on = NULL]

Arguments

conn A DBIConnection object, as returned by dbConnect. Alternatively, a dbi.catalog
or a dbi.table, in which case the new dbi.table will use the connection em-
bedded in the provided object.

id An Id, a character string (which will be converted to an Id by Id), or a SQL
object (advanced) identifying a database object (e.g., table or view) on conn.

x A dbi.table.
i A logical expression of the columns of x, a dbi.table, or a data.frame. Use

i to select a subset of the rows of x. Note: unlike data.table, i cannot be a
vector.
When i is a logical expression, the rows where the expression is TRUE are re-
turned. If the expression contains a symbol foo that is not a column name of
x but that is present in the calling scope, then the value of foo will be substi-
tuted into the expression if foo is a scalar, or if foo is a vector and is the right-
hand-side argument to %in% or %chin% (substitution occurs when the extract ([)
method is evaluated).
When i inherits from data.frame, it is coerced to a dbi.table.
When i is a dbi.table, the rows of x that match (according to the condition
specificed in on) the rows of i are returned. When nomatch == NA, all rows of
i are returned (right outer join); when nomatch == NULL, only the rows of i that
match a row of x are returned (inner join).

dbi.table-package 3

j A list of expressions, a literal character vector of column names of x, an expres-
sion of the form start_name:end_name, or a literal numeric vector of integer
values indexing the columns of x. Use j to select (and optionally, transform) the
columns of x.

by A list of expressions, a literal character vector of column names of x, an expres-
sion of the form start_name:end_name, or a literal numeric vector of integer
values indexing the columns of x. Use by to control grouping when evaluating
j.

nomatch Either NA or NULL.

on • An unnamed character vector, e.g., x[i, on = c("a", "b")], used when
columns a and b are common to both x and i.

• Foreign key joins: As a named character vector when the join columns
have different names in x and i. For example, x[i, on = c(x1 = "i1", x2
= "i2")] joins x and i by matching columns x1 and x2 in x with columns
i1 and i2 in i, respectively.

• Foreign key joins can also use the binary operator ==, e.g., x[i, on = c("x1
== i1", "x2 == i2")].

• It is also possible to use .() syntax as x[i, on = .(a, b)].
• Non-equi joins using binary operators >=, >, <=, < are also possible, e.g.,
x[i, on = c("x >= a", "y <= b")], or x[i, on = .(x >= a, y <= b)].

Value

A dbi.table.

See Also

• as.data.frame to retrieve the results set as a data.frame,

• csql to see the underlying SQL query.

Examples

open a connection to the Chinook example database using duckdb
duck <- chinook.duckdb()

create a dbi.table corresponding to the Album table on duck
Album <- dbi.table(duck, DBI::Id(table_name = "Album"))

the print method displays a 5 row preview
print(Album)
Album

'id' can also be 'SQL'; use the same DBI connection as Album
Genre <- dbi.table(Album, DBI::SQL("chinook_duckdb.main.Genre"))

use the extract (\code{[}) method to subset the dbi.table
Album[AlbumId < 5, .(Title, nchar = paste(nchar(Title), "characters"))]

use csql to see the underlying SQL query

4 as.data.frame

csql(Album[AlbumId < 5, #WHERE
.(Title, #SELECT

nchar = paste(nchar(Title), "characters"))])

as.data.frame Coerce to a Data Frame

Description

Execute a dbi.table’s underlying SQL query and return the result set as a data.frame. By default,
the result set is limited to 10,000 rows. See Details.

Usage

S3 method for class 'dbi.table'
as.data.frame(
x,
row.names = NULL,
optional = FALSE,
...,
n = getOption("dbi_table_max_fetch", 10000L)

)

Arguments

x a dbi.table.

row.names a logical value. This argument is not used.

optional a logical value. This argument is not used.

... additional arguments are ignored.

n an integer value. When nonnegative, the underlying SQL query includes a
’LIMIT n’ clause and n is also passed to dbFetch. When negative, the un-
derlying SQL query does not include a LIMIT clause and all rows in the result
set are returned.

Details

By default, as.data.frame returns up to 10,000 rows (see the n argument). To override this limit,
either call as.data.frame and provide the n argument (e.g., n = -1 to return the entire result set),
or set the option dbi_table_max_fetch to the desired default value of n.

Value

a data.frame.

as.dbi.table 5

See Also

as.data.frame (the generic method in the base package).

Examples

duck <- chinook.duckdb()
Artist <- dbi.table(duck, DBI::Id("Artist"))

as.data.frame(Artist, n = 7)[]

as.dbi.table Coerce to DBI Table

Description

Test whether an object is a dbi.table, or coerce it if possible.

Usage

is.dbi.table(x)

as.dbi.table(conn, x, type = c("auto", "query", "temporary"))

Arguments

x any R object.

conn a connection handle returned by dbConnect. Alternatively, conn may be a
dbi.table or a dbi.catalog; in these cases, the connection handle is extracted
from the provided object.

type a character string. Possible choices are "auto", "query", and "temporary".
See Details. The default "auto" uses In Query tables when x has 500 or fewer
rows or when creating a temporary table on the database fails.

Details

Two types of tables are provided: Temporary (when type == "temporary") and In Query (when
type == "query"). For Temporary, the data are written to a SQL temporary table and the associated
dbi.table is returned. For In Query, the data are written into a CTE as part of the query itself -
useful when the connection does not permit creating temporary tables.

Value

a dbi.table.

6 dbExecute,dbi.catalog,SQL-method

Note

The temporary tables created by this function are dropped (by calling dbRemoveTable) during
garbage collection when they are no longer referenced.

Examples

duck <- dbi.catalog(chinook.duckdb)
csql(as.dbi.table(duck, iris[1:4, 1:3], type = "query"))

csql See SQL

Description

View a dbi.table’s underlying SQL query.

Usage

csql(x, n = getOption("dbi_table_max_fetch", 10000L))

Arguments

x a dbi.table.

n a single integer value. When nonnegative, limits the number of rows returned
by the query to n.

Value

none (invisible NULL).

dbExecute,dbi.catalog,SQL-method

DBI Methods for dbi.tables

Description

Call DBI methods using the underlying DBI connection.

dbExecute,dbi.catalog,SQL-method 7

Usage

S4 method for signature 'dbi.catalog,SQL'
dbExecute(conn, statement, ...)

S4 method for signature 'dbi.schema,SQL'
dbExecute(conn, statement, ...)

S4 method for signature 'dbi.table,SQL'
dbExecute(conn, statement, ...)

S4 method for signature 'dbi.table,missing'
dbSendStatement(
conn,
statement,
...,
n = getOption("dbi_table_max_fetch", 10000L)

)

S4 method for signature 'dbi.table,missing'
dbGetQuery(conn, statement, ..., n = getOption("dbi_table_max_fetch", 10000L))

S4 method for signature 'dbi.catalog'
dbGetInfo(dbObj, ...)

S4 method for signature 'dbi.schema'
dbGetInfo(dbObj, ...)

S4 method for signature 'dbi.table'
dbGetInfo(dbObj, ...)

Arguments

conn a dbi.catalog, dbi.schema, or dbi.table.

statement a SQL object.

... other parameters passed on to methods.

n an integer value. A nonnegative value limits the number of records returned by
the query. A negative value omits the LIMIT (or TOP) clause entirely.

dbObj a dbi.catalog, dbi.schema, or dbi.table.

See Also

dbExecute, dbGetInfo, dbSendStatement

8 dbi.attach

dbi.attach Attach a Database Schema to the Search Path

Description

The database schema is attached to the R search path. This means that the schema is searched by
R when evaluating a variable, so that dbi.tables in the schema can be accessed by simply giving
their names.

Usage

dbi.attach(
what,
pos = 2L,
name = NULL,
warn.conflicts = FALSE,
schema = NULL,
graphics = TRUE

)

Arguments

what a connection handle returned by dbConnect or a zero-argument function that
returns a connection handle.

pos an integer specifying position in search() where to attach.

name a character string specifying the name to use for the attached database.

warn.conflicts a logical value. If TRUE, warnings are printed about conflicts from attaching
the database, unless that database contains an object .conflicts.OK. A conflict
is a function masking a function, or a non-function masking a non-function.

schema a character string specifying the name of the schema to attach.

graphics a logical value; passed to menu. In interactive sessions, when schema is NULL
and multiple schemas are found on what, a menu is displayed to select a schema.

Value

an environment, the attached schema is invisibly returned.

See Also

attach

dbi.catalog 9

dbi.catalog Create a dbi.catalog

Description

A dbi.catalog represents a database catalog.

Usage

dbi.catalog(conn, schemas = NULL)

Arguments

conn a connection handle returned by dbConnect or a zero-argument function that
returns a connection handle.

schemas a character vector of distinct schema names. These schemas will be loaded into
the dbi.catalog. The default schemas = NULL loads all schemas in the catalog.

Value

a dbi.catalog.

Examples

chinook.duckdb is a zero-argument function that returns a DBI handle
(db <- dbi.catalog(chinook.duckdb))

list schemas
ls(db)

list the tables in the schema 'main'
ls(db$main)

example_databases Example Databases

Description

These zero-argument functions return connections to the example databases included in the dbi.table
package.

Usage

chinook.sqlite()

chinook.duckdb()

10 merge

Value

a DBIConnection object, as returned by dbConnect.

merge Merge two dbi.tables

Description

Merge two dbi.tables. The dbi.table method is similar to the data.table method except that
the result set is only determined up to row order and is not sorted by default.

Default merge columns: if x has a foreign key constraint that references y then the columns compris-
ing this key are used; see details. When a foreign key cannot be found, then the common columns
between the two dbi.tabless are used.

Use the by, by.x, and by.y arguments explicitly to override this default.

Usage

S3 method for class 'dbi.table'
merge(
x,
y,
by = NULL,
by.x = NULL,
by.y = NULL,
all = FALSE,
all.x = all,
all.y = all,
sort = FALSE,
suffixes = c(".x", ".y"),
no.dups = TRUE,
recursive = FALSE,
...

)

Arguments

x, y dbi.tables sharing the same DBI connection.

by A vector of shared column names in x and y to merge on.

by.x, by.y character vectors of column names in x and y to merge on.

all a logical value. all = TRUE is shorthand to save setting both all.x = TRUE and
all.y = TRUE.

all.x a logical value. When TRUE, rows from x that do not have a matching row in y
are included. These rows will have NAs in the columns that are filled with values
from y. The default is FALSE so that only rows with data from both x and y are
included in the output.

reference.test 11

all.y a logical value. Analogous to all.x above.

sort a logical value. Currently ignored.

suffixes a length-2 character vector. The suffixes to be used for making non-by column
names unique. The suffix behavior works in a similar fashion to the merge.data.frame
method.

no.dups a logical value. When TRUE, suffixes are also appended to non-by.y column
names in y when they have the same column name as any by.x.

recursive a logical value. Only used when y is missing. When TRUE, merge is called
recursively on each of the just-merged dbi.tables. See examples.

... additional arguments are ignored.

Details

Foreign key constraints. Foreign keys can only be queried when (1) the dbi.table’s schema is
loaded, and (2) dbi.table understands the underlying database’s information schema.

merge.dbi.table uses sql.join to join x and y then formats the result set to match the typical
merge output.

Value

a dbi.table.

Examples

chinook <- dbi.catalog(chinook.duckdb)

#The Album table has a foreign key constriant that references Artist
merge(chinook$main$Album, chinook$main$Artist)

#When y is omitted, x's foreign key relationship is used to determine y
merge(chinook$main$Album)

#Multiple foreign keys are supported
csql(merge(chinook$main$Track))

#Track references Album but not Artist, Album references Artist
#This dbi.table includes Artist.Name as well
csql(merge(chinook$main$Track, recursive = TRUE))

reference.test Test dbi.table vs. Reference Implementation

Description

Evaluate an expression including at least one dbi.table and compare the result with the Reference
Implementation. This function is primarily for testing and is potentially very slow for large tables.

12 reference.test

Usage

reference.test(
expr,
envir = parent.frame(),
ignore.row.order = TRUE,
verbose = TRUE

)

Arguments

expr an expression involving at least one dbi.table and whose result can be coerced
into a data.table.

envir an environment. Where to evaluate expr.

ignore.row.order

a logical value. This argument is passed to all.equal.

verbose a logical value. When TRUE, the output from all.equal is displayed in a mes-
sage when all.equal returns anything other than TRUE.

Value

a logical value.

Reference Implementation

Suppose that id1 identifies a table in a SQL database and that [i, j, by] describes a subset/select/summarize
operation using data.table syntax. The Reference Implementation for this operation is:

setDT(dbReadTable(conn, id1))[i, j, by]

More generally, for an expression involving multiple SQL database objects and using data.table
syntax, the Reference Implementation would be to download each of these objects in their entirety,
convert them to data.tables, then evaluate the expression.

The goal of the dbi.table is to generate an SQL query that produces the same results set as the
Reference Implementation up to row ordering.

Examples

library(data.table)
duck <- dbi.catalog(chinook.duckdb)
Album <- duck$main$Album
Artist <- duck$main$Artist

reference.test(merge(Album, Artist, by = "ArtistId"))

sql.join 13

sql.join Join dbi.tables

Description

A SQL-like join of two dbi.tables that share the same DBI connection. All columns from both
dbi.tables are returned.

Usage

sql.join(x, y, type = "inner", on = NULL, prefixes = c("x.", "y."))

Arguments

x, y dbi.tables to join. x and y must share the same DBI connection.

type a character string specifying the join type. Valid choices are "inner", "left",
"right", "outer", and "cross".

on a call specifying the join predicate. The symbols in on should be column names
of x or column names of y, use prefixes as necessary.

prefixes a 2-element character vector of distinct values. When x and y both have a col-
umn with the same name (e.g., common_name) then, when specifing the join
predicate in on, use `prefixes[1]`common_name to refer to the common_name
column in x and `prefixes[2]`common_name to refer to the common_name col-
umn in y. prefixes are also used to disambiguate the output column names.

Value

a dbi.table.

Examples

chinook <- dbi.catalog(chinook.duckdb)
Album <- chinook$main$Album
Artist <- chinook$main$Artist

sql.join(Album, Artist, type = "inner",
on = Album.ArtistId == Artist.ArtistId,
prefixes = c("Album.", "Artist."))

Index

[.dbi.table (dbi.table-package), 2

all.equal, 12
as.data.frame, 3, 4, 5
as.dbi.table, 5
attach, 8

chinook.duckdb (example_databases), 9
chinook.sqlite (example_databases), 9
conflicts, 8
csql, 3, 6

data.frame, 4
data.table, 2, 10
dbConnect, 2, 5, 8–10
dbExecute, 7
dbExecute,dbi.catalog,SQL-method, 6
dbExecute,dbi.schema,SQL-method

(dbExecute,dbi.catalog,SQL-method),
6

dbExecute,dbi.table,SQL-method
(dbExecute,dbi.catalog,SQL-method),
6

dbFetch, 4
dbGetInfo, 7
dbGetInfo,dbi.catalog-method

(dbExecute,dbi.catalog,SQL-method),
6

dbGetInfo,dbi.schema-method
(dbExecute,dbi.catalog,SQL-method),
6

dbGetInfo,dbi.table
(dbExecute,dbi.catalog,SQL-method),
6

dbGetInfo,dbi.table-method
(dbExecute,dbi.catalog,SQL-method),
6

dbGetQuery,dbi.table,missing-method
(dbExecute,dbi.catalog,SQL-method),
6

dbi.attach, 8
dbi.catalog, 2, 5, 7, 9
dbi.table, 4–8, 10, 11, 13
dbi.table (dbi.table-package), 2
dbi.table-package, 2
DBIConnection, 2, 10
dbRemoveTable, 6
dbSendStatement, 7
dbSendStatement,dbi.table,missing-method

(dbExecute,dbi.catalog,SQL-method),
6

environment, 8
example_databases, 9

Id, 2
is.dbi.table (as.dbi.table), 5

menu, 8
merge, 10
merge.data.frame, 11

reference.test, 11

search, 8
SQL, 2, 7
sql.join, 11, 13

14

	dbi.table-package
	as.data.frame
	as.dbi.table
	csql
	dbExecute,dbi.catalog,SQL-method
	dbi.attach
	dbi.catalog
	example_databases
	merge
	reference.test
	sql.join
	Index

