--- title: "apisensr: episensr as a Shiny Application" author: "Denis Haine" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{apisensr} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` The package `apisensr` provides a graphical interface to the package `episensr`, quantitative bias analysis for epidemiologic data following methods compiled by Fox et al. in their book ["Applying Quantitative Bias Analysis to Epidemiologic Data, 2^nd^ ed."](https://link.springer.com/book/10.1007/978-3-030-82673-4). A demonstration of its use is available in the paper by Banack, Smith and Bodnar: *Application of a Web-based Tool for Quantitative Bias Analysis: The Example of Misclassification Due to Self-reported Body Mass Index* ([Epidemiology 2024;35(3):359-367](https://pubmed.ncbi.nlm.nih.gov/38300118/)). To run `apisensr`: ```{r eval=FALSE} library(apisensr) run_app() ``` The following functions are available in `episensr` and `apisensr`. Please refer to `episensr` for more details about these functions, either on [CRAN](https://cran.r-project.org/package=episensr) or the [episensr website](https://dhaine.codeberg.page/episensr/). | Functions available in: | `episensr` | `apisensr app` | |-------------------------+------------+----------------| | selection | x | x | | probsens.sel | x | x | | mbias | x | x | | confounders | x | x | | confounders.emm | x | x | | confounders.poly | x | x | | probsens_conf | x | x | | confounders.array | x | x | | confounders.evalue | x | | | confounders.ext | x | x | | confounders.limit | x | x | | probsens.irr.conf | x | | | misclass | x | x | | probsens | x | x | | misclass_cov | x | x | | probsens.irr | x | | | bootstrap | x | | | multidimBias | x | x |