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ALE ALE data and statistics that describe a trained model

Description

An ALE S7 object contains ALE data and statistics. For details, see vignette('ale-intro') or
the details and examples below.

https://orcid.org/0000-0001-5574-7572
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Usage

ALE(
model,
x_cols = list(d1 = TRUE),
data = NULL,
y_col = NULL,
...,
exclude_cols = NULL,
parallel = "all",
model_packages = NULL,
output_stats = TRUE,
output_boot_data = FALSE,
pred_fun = function(object, newdata, type = pred_type) {

stats::predict(object =
object, newdata = newdata, type = type)

},
pred_type = "response",
p_values = "auto",
aler_alpha = c(0.01, 0.05),
max_num_bins = 10,
boot_it = 0,
boot_alpha = 0.05,
boot_centre = "mean",
seed = 0,
y_type = NULL,
sample_size = 500,
silent = FALSE,
.bins = NULL

)

Arguments

model model object. Required. Model for which ALE should be calculated. May be
any kind of R object that can make predictions from data.

x_cols, exclude_cols
character, list, or formula. Columns names from data requested in one of the
special x_cols formats for which ALE data is to be calculated. Defaults to 1D
ALE for all columns in data except y_col. See details in the documentation for
resolve_x_cols().

data dataframe. Dataset from which to create predictions for the ALE. It should
normally be the same dataset on which model was trained. If not provided,
ALE() will try to detect it automatically if it is included in the model object.

y_col character(1). Name of the outcome target label (y) variable. If not provided,
ALE() will try to detect it automatically from the model object. For non-standard
models, y_col should be provided. For time-to-event (survival) models, see
details.

... not used. Inserted to require explicit naming of subsequent arguments.
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parallel non-negative integer(1) or character(1) in c("all", "all but one"). Number of
parallel threads (workers or tasks) for parallel execution of the constructor. The
default "all" uses all available physical and logical CPU cores. "all but one" uses
only physical cores and reserves one core for the system. Set parallel = 0 to
disable parallel processing. See details.

model_packages character. Character vector of names of packages that model depends on that
might not be obvious with parallel processing. If you get weird error messages
when parallel processing is enabled (which is the default) but they are resolved
by setting parallel = 0, you might need to specify model_packages. See de-
tails.

output_stats logical(1). If TRUE (default), return ALE statistics.
output_boot_data

logical(1). If TRUE, return the raw ALE data for each bootstrap iteration. Default
is FALSE.

pred_fun, pred_type
function,character(1). pred_fun is a function that returns a vector of predicted
values of type pred_type from model on data. See details.

p_values instructions for calculating p-values. Possible values are:

• NULL: p-values are not calculated.
• An ALEpDist object: the object will be used to calculate p-values.
• "auto" (default): If statistics are requested (output_stats = TRUE) and

bootstrapping is requested (boot_it > 0), the constructor will try to auto-
matically create a fast surrogate ALEpDist object; otherwise, no p-values
are calculated. However, automatic creation of a surrogate ALEpDist ob-
ject only works with standard R model types. If the automatic process
errors, then you must explicitly create and provide an ALEpDist() object.
Note: although faster surrogate p-values are convenient for interactive anal-
ysis, they are not acceptable for definitive conclusions or publication. See
details below.

aler_alpha numeric(2) from 0 to 1. Thresholds for p-values ("alpha") for confidence interval
ranges for the ALER band if p_values are provided (that is, not NULL). The
inner band range will be the median value of y ± aler_alpha[2] of the relevant
ALE statistic (usually ALE range or normalized ALE range). When there is a
second outer band, its range will be the median ± aler_alpha[1]. For example,
in the ALE plots, for the default aler_alpha = c(0.01, 0.05), the inner band
will be the median ± ALER minimum or maximum at p = 0.05 and the outer
band will be the median ± ALER minimum or maximum at p = 0.01.

max_num_bins positive integer(1). Maximum number of ALE bins for numeric x_cols vari-
ables. The number of bins is eventually the lower of the number of unique
values of a numeric variable and max_num_bins. Non-numeric variables such
as (binary or categorical) always use all their actual values for ALE bins.

boot_it non-negative integer(1). Number of bootstrap iterations for data-only bootstrap-
ping on ALE data. This is appropriate for models that have been developed with
cross-validation. For models that have not been validated, full-model bootstrap-
ping should be used instead with a ModelBoot() class object. See details there.
The default boot_it = 0 turns off bootstrapping.
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boot_alpha numeric(1) from 0 to 1. When ALE is bootstrapped (boot_it > 0), boot_alpha
specifies the thresholds for p-values ("alpha") for percentile-based confidence
interval range for the bootstrapped ALE values. The bootstrap confidence inter-
vals will be the lowest and highest (1 - 0.05) / 2 percentiles. For example, if
boot_alpha = 0.05 (default), the confidence intervals will be from the 2.5 (low)
and 97.5 (high) percentiles.

boot_centre character(1) in c(’mean’, ’median’). When bootstrapping, the main estimate
for the ALE y value is considered to be boot_centre. Regardless of the value
specified here, both the mean and median will be available.

seed integer(1). Random seed. Supply this between runs to assure that identical
random ALE data is generated each time when bootstrapping. Without boot-
strapping, ALE is a deterministic algorithm that should result in identical results
each time regardless of the seed specified. However, with parallel processing en-
abled (as it is by default), only the exact computing setup will give reproducible
results. For reproducible results across different computers, turn off paralleliza-
tion with parallel = 0.

y_type character(1) in c(’binary’, ’numeric’, ’categorical’, ’ordinal’). Datatype of the
y (outcome) variable. Normally determined automatically; only provide if an
error message for a complex non-standard model requires it.

sample_size non-negative integer(1). Size of the sample of data to be returned with the ALE
object. This is primarily used for rug plots in ALEPlots().

silent logical(1), default FALSE. If TRUE, do not display any non-essential messages
during execution (such as progress bars). Regardless, any warnings and errors
will always display. See details for how to customize progress bars.

.bins Internal use only. List of ALE bin and n count vectors. If provided, these vec-
tors will be used to set the intervals of the ALE x axis for each variable. By
default (NULL), ALE() automatically calculates the bins. .bins is normally used
in advanced analyses where the bins from a previous analysis are reused for sub-
sequent analyses (for example, for full model bootstrapping with ModelBoot()).

Value

An object of class ALE with properties effect and params.

Properties

effect Stores the ALE data and, optionally, ALE statistics and bootstrap data for one or more cate-
gories.

params The parameters used to calculate the ALE data. These include most of the arguments used
to construct the ALE object. These are either the values provided by the user or those used by
default if the user did not change them but also includes several objects that are created within
the constructor. These extra objects are described here, as well as those parameters that are
stored differently from the form in the arguments:

* `max_d`: the highest dimension of ALE data present. If only 1D ALE is present, then `max_d == 1`. If even one 2D ALE element is present (even with no 1D), then `max_d == 2`.
* `requested_x_cols`,`ordered_x_cols`: `requested_x_cols` is the resolved list of `x_cols` as requested by the user (that is, `x_cols` minus `exclude_cols`). `ordered_x_cols` is the same set of `x_cols` but arranged in the internal storage order.
* `y_cats`: categories for categorical classification models. For non-categorical models, this is the same as `y_col`.
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* `y_type`: high-level datatype of the y outcome variable.
* `y_summary`: summary statistics of y values used for the ALE calculation. These statistics are based on the actual values of `y_col` unless if `y_type` is a probability or other value that is constrained in the `[0, 1]` range, in which case `y_summary` is based on the predictions of `y_col` from `model` on the `data`. `y_summary` is a named numeric matrix. For most outcomes with a single value per predicted row, there is just one column with the same name as `y_col`. For categorical y outcomes, there is one column for each category in `y_cats` plus an additional column with the same name as `y_col`; this is the mean of the categorical columns. The rows are named mostly as the percentile of the y values. E.g., the '5%' row is the 5th percentile of y values. The following named rows have special meanings:
* `min`, `mean`, `max`: the minimum, mean, and maximum y values, respectively. Note that the median is `50%`, the 50th percentile.
* `aler_lo_lo`, `aler_lo`, `aler_hi`, `aler_hi_hi`: When p-values are present, `aler_lo` and `aler_hi` are the inner lower and upper confidence intervals of `y_col` values with respect to the median (`50%`); `aler_lo_lo` and `aler_hi_hi` are the outer confidence intervals. See the documentation for the `aler_alpha` argument to understand how these are determined. Without p-values, these elements are absent.
* `model`: selected elements that describe the `model` that the `ALE` object interprets.
* `data`: selected elements that describe the `data` used to produce the `ALE` object. To avoid the large size of duplicating `data` entirely, only a sample of the size of the `sample_size` argument is retained.

Custom predict function

The calculation of ALE requires modifying several values of the original data. Thus, ALE() needs
direct access to the predict function for the model. By default, ALE() uses a generic default
predict function of the form predict(object, newdata, type) with the default prediction type
of 'response'. If, however, the desired prediction values are not generated with that format, the
user must specify what they want. Very often, the only modification needed is to change the pre-
diction type to some other value by setting the pred_type argument (e.g., to 'prob' to generated
classification probabilities). But if the desired predictions need a different function signature, then
the user must create a custom prediction function and pass it to pred_fun. The requirements for
this custom function are:

• It must take three required arguments and nothing else:

– object: a model
– newdata: a dataframe or compatible table type such as a tibble or data.table
– type: a string; it should usually be specified as type = pred_type These argument names

are according to the R convention for the generic stats::predict() function.

• It must return a vector or matrix of numeric values as the prediction.

You can see an example below of a custom prediction function.

ALE statistics and p-values

For details about the ALE-based statistics (ALED, ALER, NALED, and NALER), see vignette('ale-statistics').
For general details about the calculation of p-values, see ALEpDist(). Here, we clarify the auto-
matic calculation of p-values with the ALE() constructor.

As explained in the documentation above for the p_values argument, the default p_values =
"auto" will try to automatically create a fast surrogate ALEpDist object. However, this is on the
condition that statistics are requested (default, output_stats = TRUE) and bootstrapping is also re-
quested (not default, if boot_it is any value greater than 0). Requesting statistics is necessary
otherwise p-values are not needed. However, the requirement for requiring bootstrapping is a prag-
matic design choice. The challenge is that creating an ALEpDist object can be slow. (Even the fast
surrogate option rarely takes less than 10 seconds, even with parallelization.) Thus, to optimize
speed, p-values will not be calculated unless requested. However, if the user requests bootstrapping
(which is slower than not requesting it), it can be assumed that they are willing to sacrifice some
speed for the sake of greater precision in their ALE analysis; thus, extra time is taken to at least
create a relatively faster surrogate ALEpDist object.

Parallel processing

Parallel processing using the {furrr} framework is enabled by default. The number of paral-
lel threads (workers or cores) is specified with the parallel argument. By default (parallel
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= "all"), it will use all the available physical and logical CPU cores. However, if the proce-
dure is very slow (with a large dataset and slow prediction algorithm), you might want to set
parallel = "all but one"), which will only use faster physical cores and reserve one physical
core so that your computer does not slow down as you continue working on other tasks while the
procedure runs. To disable parallel processing, set parallel = 0.

The {ale} package should be able to automatically recognize and load most packages that are
needed, but with parallel processing enabled (which is the default), some packages might not be
properly loaded. This problem might be indicated if you get a strange error message that mentions
something somewhere about "progress interrupted" or "future", especially if you see such errors
after the progress bars begin displaying (assuming you did not disable progress bars with silent
= TRUE). In that case, first try disabling parallel processing with parallel = 0. If that resolves the
problem, then to get faster parallel processing to work, try adding all the package names needed for
the model to the model_packages argument, e.g., model_packages = c('tidymodels', 'mgcv').

Time-to-event (survival) models

For time-to-event (survival) models, set the following arguments:

• y_col must be the set to the name of the binary event column.

• Include the time column in the exclude_cols argument so that its ALE will not be calculated,
e.g., exclude_cols = 'time'. This is not essential but if it is not excluded, it will always
result in an exactly zero ALE effect because time is an outcome, not a predictor, of the time-
to-event model’s outcome, so calculating it is a waste of time.

• pred_type must be specified according to the desired type argument for the predict()
method of the time-to-event algorithm (e.g., "risk", "survival", "time", etc.).

• pred_fun might work fine without modification as long as the settings above are configured.
However, for non-standard time-to-event models, a custom pred_fun as specified above might
be needed.

Progress bars

Progress bars are implemented with the {progressr} package. For details on customizing the
progress bars, see the introduction to the {progressr} package. To disable progress bars when
calling a function in the ale package, set silent = TRUE.

References

Okoli, Chitu. 2023. “Statistical Inference Using Machine Learning and Classical Techniques Based
on Accumulated Local Effects (ALE).” arXiv. doi:10.48550/arXiv.2310.09877.

Examples

# Sample 1000 rows from the ggplot2::diamonds dataset (for a simple example)
set.seed(0)
diamonds_sample <- ggplot2::diamonds[sample(nrow(ggplot2::diamonds), 1000), ]

# Create a GAM model with flexible curves to predict diamond price
# Smooth all numeric variables and include all other variables
gam_diamonds <- mgcv::gam(

https://progressr.futureverse.org/articles/progressr-intro.html
doi:10.48550/arXiv.2310.09877
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price ~ s(carat) + s(depth) + s(table) + s(x) + s(y) + s(z) +
cut + color + clarity +
ti(carat, by = clarity), # a 2D interaction

data = diamonds_sample
)
summary(gam_diamonds)

# Simple ALE without bootstrapping: by default, all 1D ALE effects
ale_gam_diamonds <- ALE(gam_diamonds)

# Simple printing of all plots
plot(ale_gam_diamonds)

# Bootstrapped ALE
# This can be slow, since bootstrapping runs the algorithm boot_it times

# Create ALE with 100 bootstrap samples
ale_gam_diamonds_boot <- ALE(

gam_diamonds,
# request all 1D ALE effects and only the carat:clarity 2D effect
list(d1 = TRUE, d2 = 'carat:clarity'),
boot_it = 100

)

#' More advanced plot manipulation
ale_plots <- plot(ale_gam_diamonds_boot) # Create an ALEPlots object

# Print the plots: First page prints 1D ALE; second page prints 2D ALE
ale_plots # or print(ale_plots) to be explicit

# Extract specific plots (as lists of ggplot objects)
get(ale_plots, 'carat') # extract a specific 1D plot
get(ale_plots, 'carat:clarity') # extract a specific 2D plot
get(ale_plots, type = 'effect') # ALE effects plot
# See help(get.ALEPlots) for more options, such as for categorical plots

# If the predict function you want is non-standard, you may define a
# custom predict function. It must return a single numeric vector.
custom_predict <- function(object, newdata, type = pred_type) {

predict(object, newdata, type = type, se.fit = TRUE)$fit
}

ale_gam_diamonds_custom <- ALE(
gam_diamonds,
pred_fun = custom_predict, pred_type = 'link'

)

# Plot the ALE data
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plot(ale_gam_diamonds_custom)

# How to retrieve specific types of ALE data from an ALE object.
ale_diamonds_with_boot_data <- ALE(

gam_diamonds,
# For detailed options for x_cols, see examples at resolve_x_cols()
x_cols = ~ carat + cut + clarity + carat:clarity + color:depth,
output_boot_data = TRUE,
boot_it = 10 # just for demonstration

)

# See ?get.ALE for details on the various kinds of data that may be retrieved.
get(ale_diamonds_with_boot_data, ~ carat + color:depth) # default ALE data
get(ale_diamonds_with_boot_data, what = 'boot_data') # raw bootstrap data
get(ale_diamonds_with_boot_data, stats = 'estimate') # summary statistics
get(ale_diamonds_with_boot_data, stats = c('aled', 'naled'))
get(ale_diamonds_with_boot_data, stats = 'all')
get(ale_diamonds_with_boot_data, stats = 'conf_regions')
get(ale_diamonds_with_boot_data, stats = 'conf_sig')

ALEpDist Random variable distributions of ALE statistics for generating p-
values

Description

ALE statistics are accompanied with two indicators of the confidence of their values. First, boot-
strapping creates confidence intervals for ALE effects and ALE statistics to give a range of the
possible ALE values. Second, we calculate p-values, an indicator of the probability that a given
ALE statistic is random. An ALEpDist S7 object contains the necessary distribution data for gener-
ating such p-values.

Usage

ALEpDist(
model,
data = NULL,
...,
y_col = NULL,
rand_it = NULL,
surrogate = FALSE,
parallel = "all",
model_packages = NULL,
random_model_call_string = NULL,
random_model_call_string_vars = character(),
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positive = TRUE,
pred_fun = function(object, newdata, type = pred_type) {

stats::predict(object =
object, newdata = newdata, type = type)

},
pred_type = "response",
output_residuals = FALSE,
seed = 0,
silent = FALSE,
.skip_validation = FALSE

)

Arguments

model See documentation for ALE()
data See documentation for ALE()
... not used. Inserted to require explicit naming of subsequent arguments.
y_col See documentation for ALE()
rand_it non-negative integer(1). Number of times that the model should be retrained

with a new random variable. The default of NULL will generate 1000 iterations,
which should give reasonably stable p-values; these are considered "exact" p-
values. It can be reduced for approximate ("approx") p-values as low as 100 for
faster test runs but then the p-values are not as stable. rand_it below 100 is not
allowed as such p-values are inaccurate.

surrogate logical(1). Create p-value distributions based on a surrogate linear model (TRUE)
instead of on the original model (default FALSE). Note that while faster surro-
gate p-values are convenient for interactive analysis, they are not acceptable for
definitive conclusions or publication. See details.

parallel See documentation for ALE(). Note that for exact p-values, by default 1000
random variables are trained. So, even with parallel processing, the procedure
is very slow.

model_packages See documentation for ALE()
random_model_call_string

character(1). If NULL, the ALEpDist() constructor tries to automatically detect
and construct the call for p-values. If it cannot, the constructor will fail. In
that case, a character string of the full call for the model must be provided that
includes the random variable. See details.

random_model_call_string_vars

See documentation for model_call_string_vars in ModelBoot(); their oper-
ation is very similar.

positive See documentation for ModelBoot()
pred_fun, pred_type

See documentation for ALE()
output_residuals

logical(1). If TRUE, returns the residuals in addition to the raw data of the gener-
ated random statistics (which are always returned). The default FALSE does not
return the residuals.
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seed See documentation for ALE()

silent See documentation for ALE()
.skip_validation

Internal use only. logical(1). Skip non-mutating data validation checks. Chang-
ing the default FALSE risks crashing with incomprehensible error messages.

Value

An object of class ALEpDist with properties rand_stats, residual_distribution, residuals,
and params.

Properties

rand_stats A named list of tibbles. There is normally one element whose name is the same as
y_col except if y_col is a categorical variable; in that case, the elements are named for each
category of y_col. Each element is a tibble whose rows are each of the rand_it_ok iterations
of the random variable analysis and whose columns are the ALE statistics obtained for each
random variable.

residual_distribution A univariateML object with the closest estimated distribution for the residuals
as determined by univariateML::model_select(). This is the distribution used to generate
all the random variables.

residuals If output_residuals == TRUE, returns a matrix of the actual y_col values from data
minus the predicted values from the model (without random variables) on the data. The rows
correspond to each row of data. The columns correspond to the named elements (y_col or
categories) described above for rand_stats. NULL if output_residuals == FALSE (default).

params Parameters used to generate p-value distributions. Most of these repeat selected arguments
passed to ALEpDist(). These are either values provided by the user or used by default if the
user did not change them but the following additional or modified objects are notable:

* `model`: selected elements that describe the `model` used to generate the random distributions.
* `rand_it`: the number of random iterations requested by the user either explicitly (by specifying a whole number) or implicitly with the default `NULL`: exact p distributions imply 1000 iterations and surrogate distributions imply 100 unless an explicit number of iterations is requested.
* `rand_it_ok`: A whole number with the number of `rand_it` iterations that successfully generated a random variable, that is, those that did not fail for whatever reason. The `rand_it` - `rand_it_ok` failed attempts are discarded.
* `exactness`: A string. For regular p-values generated from the original model, `'exact'` if `rand_it_ok >= 1000` and `'approx'` otherwise. `'surrogate'` for p-values generated from a surrogate model. `'invalid'` if `rand_it_ok < 100`.

Exact p-values for ALE statistics

Because ALE is non-parametric (that is, it does not assume any particular distribution of data), the
{ale} package takes a literal frequentist approach to the calculation of empirical (Monte Carlo)
p-values. That is, it literally retrains the model 1000 times, each time modifying it by adding a
distinct random variable to the model. (The number of iterations is customizable with the rand_it
argument.) The ALEs and ALE statistics are calculated for each random variable. The percentiles
of the distribution of these random-variable ALEs are then used to determine p-values for non-
random variables. Thus, p-values are interpreted as the frequency of random variable ALE statistics
that exceed the value of ALE statistic of the actual variable in question. The specific steps are as
follows:

• The residuals of the original model trained on the training data are calculated (residuals are
the actual y target value minus the predicted values).
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• The closest distribution of the residuals is detected with univariateML::model_select().

• 1000 new models are trained by generating a random variable each time with univariateML::rml()
and then training a new model with that random variable added.

• The ALEs and ALE statistics are calculated for each random variable.

• For each ALE statistic, the empirical cumulative distribution function (stats::ecdf()) is
used to create a function to determine p-values according to the distribution of the random
variables’ ALE statistics.

Because the ale package is model-agnostic (that is, it works with any kind of R model), the
ALEpDist() constructor cannot always automatically manipulate the model object to create the
p-values. It can only do so for models that follow the standard R statistical modelling conventions,
which includes almost all base R algorithms (like stats::lm() and stats::glm()) and many
widely used statistics packages (like mgcv and survival), but which excludes most machine learn-
ing algorithms (like tidymodels and caret). For non-standard algorithms, the user needs to do a
little work to help the ALEpDist() constructor correctly manipulate its model object:

• The full model call must be passed as a character string in the argument random_model_call_string,
with two slight modifications as follows.

• In the formula that specifies the model, you must add a variable named ’random_variable’.
This corresponds to the random variables that the constructor will use to estimate p-values.

• The dataset on which the model is trained must be named ’rand_data’. This corresponds to
the modified datasets that will be used to train the random variables.

See the example below for how this is implemented.

If the model generation is unstable (because of a small dataset size or a finicky model algorithm),
then one or more iterations might fail, possibly dropping the number of successful iterations to
below 1000. Then the p-values are only considered approximate; they are no longer exact. If
that is the case, then request rand_it at a sufficiently high number such that even if some iter-
ations fail, at least 1000 will succeed. For example, for an ALEpDist object named p_dist, if
p_dist@params$rand_it_ok is 950, you could rerun ALEpDist() with rand_it = 1100 or higher
to allow for up to 100 possible failures.

Faster approximate and surrogate p-values

The procedure we have just described requires at least 1000 random iterations for p-values to be
considered "exact". Unfortunately, this procedure is rather slow–it takes at least 1000 times as long
as the time it takes to train the model once.

With fewer iterations (at least 100), p-values can only be considered approximate ("approx").
Fewer than 100 such p-values are invalid. There might be fewer iterations either because the user
requests them with the rand_it argument or because some iterations fail for whatever reason. As
long as at least 1000 iterations succeed, p-values will be considered exact.

Because the procedure can be very slow, a faster version of the algorithm generates "surrogate" p-
values by substituting the original model with a linear model that predicts the same y_col outcome
from all the other columns in data. By default, these surrogate p-values use only 100 iterations
and if the dataset is large, the surrogate model samples 1000 rows. Thus, the surrogate p-values
can be generated much faster than for slower model algorithms on larger datasets. Although they
are suitable for model development and analysis because they are faster to generate, they are less
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reliable than approximate p-values based on the original model. In any case, definitive conclusions
(e.g., for publication) always require exact p-values with at least 1000 iterations on the original
model. Note that surrogate p-values are always marked as "surrogate"; even if they are generated
based on over 1000 iterations, they can never be considered exact because they are not based on the
original model.

References

Okoli, Chitu. 2023. "Statistical Inference Using Machine Learning and Classical Techniques Based
on Accumulated Local Effects (ALE)." arXiv. doi:10.48550/arXiv.2310.09877.

Examples

# Sample 1000 rows from the ggplot2::diamonds dataset (for a simple example)
set.seed(0)
diamonds_sample <- ggplot2::diamonds[sample(nrow(ggplot2::diamonds), 1000), ]

# Create a GAM with flexible curves to predict diamond price
# Smooth all numeric variables and include all other variables
gam_diamonds <- mgcv::gam(

price ~ s(carat) + s(depth) + s(table) + s(x) + s(y) + s(z) +
cut + color + clarity +
ti(carat, by = clarity), # a 2D interaction

data = diamonds_sample
)
summary(gam_diamonds)

# Create p_value distribution
pd_diamonds <- ALEpDist(

gam_diamonds,
diamonds_sample,
# only 100 iterations for a quick demo; but usually should remain at 1000
rand_it = 100

)

# Examine the structure of the returned object
print(pd_diamonds)
# In RStudio: View(pd_diamonds)

# Calculate ALEs with p-values
ale_gam_diamonds <- ALE(

gam_diamonds,
p_values = pd_diamonds

)

# Plot the ALE data. The horizontal bands in the plots use the p-values.
plot(ale_gam_diamonds)

# For non-standard models that give errors with the default settings,
# you can use 'random_model_call_string' to specify a model for the estimation
# of p-values from random variables as in this example.

doi:10.48550/arXiv.2310.09877
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# See details above for an explanation.
pd_diamonds <- ALEpDist(

gam_diamonds,
diamonds_sample,
random_model_call_string = 'mgcv::gam(
price ~ s(carat) + s(depth) + s(table) + s(x) + s(y) + s(z) +

cut + color + clarity + random_variable,
data = rand_data

)',
# only 100 iterations for a quick demo; but usually should remain at 1000
rand_it = 100

)

# Examine the structure of the returned object
print(pd_diamonds)
# In RStudio: View(pd_diamonds)

ALEPlots ALE plots with print and plot methods

Description

An ALEPlots S7 object contains the ALE plots from ALE or ModelBoot objects stored as ggplot
objects. The ALEPlots constructor creates all possible plots from the ALE or ModelBoot passed to
it—not only individual 1D and 2D ALE plots, but also special plots like the ALE effects plot. So,
an ALEPlots object is a collection of plots, almost never a single plot. To retrieve specific plots, use
the get.ALEPlots() method. See the examples with the ALE() and ModelBoot() objects for how
to manipulate ALEPlots objects.

Usage

ALEPlots(
obj,
...,
ale_centre = "median",
y_1d_refs = c("25%", "75%"),
rug_sample_size = obj@params$sample_size,
min_rug_per_interval = 1,
y_nonsig_band = 0.05,
seed = 0,
silent = FALSE

)
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Arguments

obj ALE or ModelBoot object. The object containing ALE data to be plotted.

... not used. Inserted to require explicit naming of subsequent arguments.

ale_centre character(1) in c(’median’, ’mean’, ’zero’). The ALE y values in the plots will
be centred relative to this value. ’median’ is the default. ’zero’ will maintain the
actual ALE values, which are centred on zero.

y_1d_refs character or numeric vector. For 1D ALE plots, the y outcome values for which
a reference line should be drawn. If a character vector, y_1d_refs values are
names from obj@params$y_summary (usually quantile names). If a numeric
vector, y_1d_refs values must be values within the range of y, that is, between
obj@params$y_summary$min and obj@params$y_summary$max inclusive.

rug_sample_size, min_rug_per_interval
non-negative integer(1). Rug plots are down-sampled to rug_sample_size
rows, otherwise they can be very slow for large datasets. By default, their
size is the value of obj@params$sample_size. They maintain representative-
ness of the data by guaranteeing that each of the ALE bins will retain at least
min_rug_per_interval elements; usually set to just 1 (default) or 2. To pre-
vent this down-sampling, set rug_sample_size to Inf (but then the ALEPlots
object would store the entire dataset, so could become very large).

y_nonsig_band numeric(1) from 0 to 1. If there are no p-values, some plots (notably the 1D
effects plot) will shade grey the inner y_nonsig_band quantile below and above
the ale_centre average (the median, by default) to indicate nonsignificant ef-
fects.

seed See documentation for ALE()

silent See documentation for ALE()

Value

An object of class ALEPlots with properties plots and params.

Properties

plots Stores the ALE plots. Use get.ALEPlots() to access them.

params The parameters used to calculate the ALE plots. These include most of the arguments used
to construct the ALEPlots object. These are either the values provided by the user or used by
default if the user did not change them but also includes several objects that are created within
the constructor. These extra objects are described here, as well as those parameters that are
stored differently from the form in the arguments:

* `y_col`, `y_cats`: See documentation for [ALE()]
* `max_d`: See documentation for [ALE()]
* `requested_x_cols`: See documentation for [ALE()]. Note, however, that `ALEPlots` does not store `ordered_x_cols`.

Examples

# See examples with ALE and ModelBoot objects
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census Census Income

Description

Census data that indicates, among other details, if the respondent’s income exceeds $50,000 per
year. Also known as "Adult" dataset.

Usage

census

Format

A tibble with 32,561 rows and 15 columns:

higher_income TRUE if income > $50,000

age continuous

workclass Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-
pay, Never-worked

fnlwgt continuous. "A proxy for the demographic background of the people: ’People with similar
demographic characteristics should have similar weights’" For more details, see https://www.openml.org/search?type=data&id=1590.

education Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th,
7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool

education_num continuous

marital_status Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-
absent, Married-AF-spouse

occupation Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-
cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-
serv, Protective-serv, Armed-Forces

relationship Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried

race White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black

sex Female, Male

capital_gain continuous

capital_loss continuous

hours_per_week continuous

native_country United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-
US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines,
Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic,
Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thai-
land, Yugoslavia, El-Salvador, Trinidad&Tobago, Peru, Hong, Holland-Netherlands

This dataset is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) li-
cense.
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Source

Becker,Barry and Kohavi,Ronny. (1996). Adult. UCI Machine Learning Repository. https://doi.org/10.24432/C5XW20.

get S7 generic get method for objects in the ale package

Description

Retrieve specific data elements from an object based on their X column names.

If obj is not an object from the ale package, then this generic passes on all arguments to the
base::get() function.

Usage

get(obj, ...)

Arguments

obj object.

... For ale package objects, instructions for which predictor (x) columns should be
retrieved. For everything else, arguments to pass to base::get().

get.ALE get method for ALE objects

Description

Retrieve specific elements from an ALE object.

Arguments

obj ALE object from which to retrieve elements.
x_cols, exclude_cols

character, list, or formula. Columns names and interaction terms from obj re-
quested in one of the special x_cols formats. The default value of NULL for
x_cols retrieves all available data of the output requested in what. See details
in the documentation for resolve_x_cols().

what character(1). What kind of output is requested. Must be either "ale" (default) or
"boot_data". To retrieve ALE statistics, see the stats argument.

... not used. Inserted to require explicit naming of subsequent arguments.

stats character(1). Retrieve ALE statistics. If stats is specified, then what must
be left at the default ("ale"). Otherwise, get() errors if stats is specified and
what has some other value. See the return value details below for valid values
for stats.
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cats character. Optional category names to retrieve if the ALE is for a categorical y
outcome model.

ale_centre Same as in documentation for ALEPlots()

simplify logical(1). If TRUE (default), the results will be simplified to the simplest list
structure possible to give the requested results. If FALSE, a complex but consis-
tent list structure will be returned; this might be preferred for programmatic and
non-interactive use.

silent See documentation for resolve_x_cols()

Value

Regardless of the requested data, all get.ALE() have a common structure:

• If more than one category of the y outcome is returned, then the top level is a list named by
each category. If, however, the y outcome is not categorical or only one category of multiple
possibilities is specified using the cats argument, then the top level never has categories,
regardless of the value of simplify.

• The next level (or top level if there are zero or one category) is a list with one or two levels:

– d1: 1D ALE elements.
– d2: 2D ALE elements. However, if elements of only one dimension (either 1D or 2D)

are requested and simplify = TRUE (default), the empty list is eliminated and the level
is skipped to provide only the elements present. For example, if only 1D ALE data is
requested, then there will be no d1 sublist but only a list of the ALE data as described for
the next level. If simplify = FALSE, both d1 and d2 sublists will always be returned; the
empty sublist will be NULL.

While all results follow the general structure just described, the specific type of data returned de-
pends on the values of the what and stats arguments:

what = ’ale’ (default) and stats = NULL (default) A list whose elements, named by each requested
x variable, are each a tibble. The rows each represent one ALE bin. The tibble has the fol-
lowing columns: * var.bin or var.ceil where var is the name of a variable (column): For
non-numeric x, var.bin is the value of each of the ALE categories. For numeric x, var.ceil
is the value of the upper bound (ceiling) of each ALE bin. The first "bin" of numeric variables
represents the minimum value. For 2D ALE with an var1 by var2 interaction, both var1.bin
and var2.bin columns are returned (or var1.ceil or var2.ceilfor numeric var1 or var2).
* .n: the number of rows of data in each bin represented by var.bin or var.ceil. For nu-
meric x, the first bin contains all data elements that have exactly the minimum value of x. This
is often 1, but might be more than 1 if more than one data element has exactly the minimum
value. * .y: the ALE function value calculated for that bin. For bootstrapped ALE, this is
the same as .y_mean by default or .y_median if boot_centre = 'median'. Regardless, both
.y_mean and .y_median are returned as columns here. * .y_lo, .y_hi: the lower and up-
per confidence intervals, respectively, for the bootstrapped .y value based on the boot_alpha
argument in the ALE() constructor.

what = ’boot_data’ and stats = NULL (default) A list whose elements, named by each requested
x variable, are each a tibble. These are the data from which .y_mean, .y_median, .y_lo, and
.y_hi are summarized when what = 'ale'. The rows each represent one ALE bin for a spec-
ified bootstrap iteration. The tibble has the following columns: * .it: The bootstrap iteration.



get.ALE 19

Iteration 0 represents the ALE calculations on the full dataset; the remaining values of .it are
from 1 to boot_it (number of bootstrap iterations specified in the ALE() constructor. * var
where var is the name of a variable (column): For non-numeric x, var is the value of each of
the ALE categories. For numeric x, var is the value of the upper bound (ceiling) of each ALE
bin. They are otherwise similar to their meanings described for what = 'ale' above. * .n and
.y: Same as for what = 'ale'.

what = ’ale’ (default) and stats = ’estimate’ A list with elements d1 and d2 with the value
of each ALE statistic. Each row represents one variable or interaction. The tibble has the
following columns: * term: The variables or columns for the 1D or 2D ALE statistic. * aled,
aler_min, aler_max, naled, naler_min, naler_max: the respective ALE statistic for the
variable or interaction.

what = ’ale’ (default) and stats is one or more values in c(’aled’, ’aler_min’, ’aler_max’, ’naled’, ’naler_min’, ’naler_max’)
A list with elements d1 and d2 with the distribution value of the single requested ALE statis-
tic. Each element d1 and d2 is a tibble. Each row represents one statistic for one variable or
interaction. The tibble has the following columns: * term: Same as for stats = 'estimate'.
* statistic: The requested ALE statistic(s). * estimate, mean, median: The average of the
bootstrapped value of the requested statistic. estimate is equal to either mean or median de-
pending on the boot_centre argument in the ALE() constructor. If ALE is not bootstrapped,
then estimate, mean, and median are equal. * conf.low, conf.high: the lower and upper
confidence intervals, respectively, for the bootstrapped statistic based on the boot_alpha ar-
gument in the ALE() constructor. If ALE is not bootstrapped, then estimate, conf.low, and
conf.high are equal.

what = ’ale’ (default) and stats = ’all’ A list with elements d1 and d2 with the distribution
values of all available ALE statistics for the requested variables and interactions. Whereas the
stats = 'aled' (for example) format returns data for a single statistic, stats = 'all' returns
all statistics for the requested variables. Thus, the data structure and columns are identical as
for single statistics above, except that all available ALE statistics are returned.

what = ’ale’ (default) and stats = ’conf_regions’ A list with elements d1 and d2 with the
confidence regions for the requested variables and interactions. Each element is a list with
the requested d1 and d2 sub-elements as described in the general structure above. Each data
element is a tibble with confidence regions for a single variable or interaction. For an expla-
nation of the columns, see vignette('ale-statistics').

what = ’ale’ (default) and stats = ’conf_sig’ Identical structure as stats = 'conf_regions'
except that the elements are filtered for the terms (variables or interactions) that have statis-
tically significant confidence regions exceeding the threshold of the inner ALER band, specifi-
cally, at least obj@params$aler_alpha[2] of the rows of data. See vignette("ale-statistics")
for details.

Examples

# See examples at ALE() for a demonstration of how to use the get() method.
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get.ALEPlots get method for ALEPlots objects

Description

Retrieve specific plots from a ALEPlots object. Unlike subset.ALEPlots() which returns an
ALEPlots object with the subsetted x_cols variables and interactions, this get.ALEPlots() method
returns a list of ggplot2::ggplot objects as specified in the return value description. To retain spe-
cial ALEPlots behaviour like plotting, printing, and summarizing multiple plots, use subset.ALEPlots()
instead.

See get.ALE() for explanation of parameters not described here.

Arguments

obj ALEPlots object from which to retrieve ALE elements.

type character(1). What type of ALEPlots to retrieve: 'ale' for standard ALE plots
or 'effect' for ALE effects plots. See cats argument for options for categori-
cal plots.

cats character. The categories (one or more) of a categorical outcome variable to re-
trieve. To retrieve all categories as individual category plots, leave cats at the
default NULL. For categorical plots that combine all categories, specify cats =
".all". (Don’t forget the "." in ".all", which avoids naming conflicts with legit-
imate categories that might be named "all".) For such all-category plots, type
must be set to "overlay" or "facet" for the specific desired type of categorical
plot.

Value

A list of ggplot objects as described in the documentation for the return value of get.ALE(). This
is different from subset.ALEPlots(), which returns an ALEPlots object with the subsetted x_cols
variables and interactions.

get.ModelBoot get method for ModelBoot objects

Description

Retrieve specific ALE elements from a ModelBoot object. This method is similar to get.ALE()
except that the user may specify what type of ALE data to retrieve (see the argument definition for
details).

See get.ALE() for explanation of parameters not described here.
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Arguments

obj ModelBoot object from which to retrieve ALE elements.

type character(1). The type of ModelBoot ALE elements to retrieve: 'single' for
the ALE calculated on the full data set or 'boot' for the bootstrapped ALE data
(based on full-model bootstrapping). The default 'auto' will retrieve 'boot' if
it is available and 'single' otherwise.

Value

See get.ALE()

ModelBoot Statistics and ALE data for a bootstrapped model

Description

A ModelBoot S7 object contains full-model bootstrapped statistics and ALE data for a trained
model. Full-model bootstrapping (as distinct from data-only bootstrapping) retrains a model for
each bootstrap iteration. Thus, it can be rather slow, though it is much more reliable. However,
for obtaining bootstrapped ALE data, plots, and statistics, full-model bootstrapping as provided by
ModelBoot is only necessary for models that have not been developed by cross-validation. For
cross-validated models, it is sufficient (and much faster) to create a regular [ALE()] object with
bootstrapping by setting the boot_it argument in its constructor. In fact, full-model bootstrapping
with ModelBoot is often infeasible for slow machine-learning models trained on large datasets,
which should rather be cross-validated to assure their reliability. However, for models that have
not been cross-validated, full-model bootstrapping with ModelBoot is necessary for reliable results.
Further details follow below; see also vignette('ale-statistics').

Usage

ModelBoot(
model,
data = NULL,
...,
model_call_string = NULL,
model_call_string_vars = character(),
parallel = "all",
model_packages = NULL,
y_col = NULL,
positive = TRUE,
pred_fun = function(object, newdata, type = pred_type) {

stats::predict(object =
object, newdata = newdata, type = type)

},
pred_type = "response",
boot_it = 100,
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boot_alpha = 0.05,
boot_centre = "mean",
seed = 0,
output_model_stats = TRUE,
output_model_coefs = TRUE,
output_ale = TRUE,
output_boot_data = FALSE,
ale_options = list(),
ale_p = "auto",
tidy_options = list(),
glance_options = list(),
silent = FALSE

)

Arguments

model Required. See documentation for ALE()

data dataframe. Dataset to be bootstrapped. This must be the same data on which the
model was trained. If not provided, ModelBoot() will try to detect it automati-
cally. For non-standard models, data should be provided.

... not used. Inserted to require explicit naming of subsequent arguments.
model_call_string

character(1). If NULL (default), the ModelBoot tries to automatically detect and
construct the call for bootstrapped datasets. If it cannot, the function will fail
early. In that case, a character string of the full call for the model must be pro-
vided that includes boot_data as the data argument for the call. See examples.

model_call_string_vars

character. Names of variables included in model_call_string that are not
columns in data. If any such variables exist, they must be specified here or
else parallel processing may produce an error. If parallelization is disabled with
parallel = 0, then this is not a concern. See documentation for the model_packages
argument in ALE().

parallel, model_packages
See documentation for ALE()

y_col, pred_fun, pred_type
See documentation for ALE(). Used to calculate bootstrapped performance mea-
sures. If left at their default values, then the relevant performance measures are
calculated only if these arguments can be automatically detected. Otherwise,
they should be specified.

positive any single atomic value. If the model represented by model or model_call_string
is a binary classification model, positive specifies the ’positive’ value of y_col
(the target outcome), that is, the value of interest that is considered TRUE; any
other value of y_col is considered FALSE. This argument is ignored if the model
is not a binary classification model. For example, if 2 means TRUE and 1 means
FALSE, then set positive = 2.

boot_it non-negative integer(1). Number of bootstrap iterations for full-model boot-
strapping. For bootstrapping of ALE values, see details to verify if ALE() with
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bootstrapping is not more appropriate than ModelBoot(). If boot_it = 0, then
the model is run as normal once on the full data with no bootstrapping.

boot_alpha numeric(1) from 0 to 1. Alpha for percentile-based confidence interval range
for the bootstrap intervals; the bootstrap confidence intervals will be the low-
est and highest (1 - 0.05) / 2 percentiles. For example, if boot_alpha = 0.05
(default), the intervals will be from the 2.5 and 97.5 percentiles.

boot_centre character(1) in c(’mean’, ’median’). When bootstrapping, the main estimate
for the ALE y value is considered to be boot_centre. Regardless of the value
specified here, both the mean and median will be available.

seed integer. Random seed. Supply this between runs to assure identical bootstrap
samples are generated each time on the same data. See documentation for ALE()
for further details.

output_model_stats

logical(1). If TRUE (default), return overall model statistics using broom::glance()
(if available for model) and bootstrap-validated statistics if boot_it > 0.

output_model_coefs

logical(1). If TRUE (default), return model coefficients using broom::tidy() (if
available for model).

output_ale logical(1). If TRUE (default), return ALE data and statistics.
output_boot_data

logical(1). If TRUE, return the full raw data for each bootstrap iteration, specifi-
cally, the bootstrapped models and the model row indices. Default FALSE does
not return this large, detailed data.

ale_options, tidy_options, glance_options
list of named arguments. Arguments to pass to the ALE() constructor when
ale = TRUE, broom::tidy() when model_coefs = TRUE, or broom::glance()
when model_stats = TRUE, respectively, beyond (or overriding) their defaults.
Note: to obtain p-values for ALE statistics, see the ale_p argument.

ale_p Same as the p_values argument for the ALE() constructor; see documentation
there. This argument overrides the p_values element of the ale_options ar-
gument.

silent See documentation for ALE()

Value

An object of class ALE with properties model_stats, model_coefs, ale, model_stats, boot_data,
and params.

Properties

model_stats tibble of bootstrapped results from broom::glance(). NULL if model_stats argu-
ment is FALSE. In general, only broom::glance() results that make sense when bootstrapped
are included, such as df and adj.r.squared. Results that are incomparable across boot-
strapped datasets (such as aic) are excluded. In addition, certain model performance mea-
sures are included; these are bootstrap-validated with the .632 correction (Efron & Tibshirani
1986) (NOT the .632+ correction):
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• For regression (numeric prediction) models:
– mae: mean absolute error (MAE)
– sa_mae: standardized accuracy of the MAE referenced on the mean absolute devia-

tion
– rmse: root mean squared error (RMSE)
– sa_rmse: standardized accuracy of the RMSE referenced on the standard deviation

• For binary or categorical classification (probability) models:
– auc: area under the ROC curve

model_coefs A tibble of bootstrapped results from broom::tidy(). NULL if model_coefs argu-
ment is FALSE.

ale A list of bootstrapped ALE results using default ALE() settings unless if overridden with
ale_options. NULL if ale argument is FALSE. Elements are:

* `single`: an `ALE` object of ALE calculations on the full dataset without bootstrapping.
* `boot`: a list of bootstrapped ALE data and statistics. This element is not an `ALE` object; it uses a special internal format.

boot_data A tibble of bootstrap results. Each row represents a bootstrap iteration. NULL if
boot_data argument is FALSE. The columns are:

* `it`: the specific bootstrap iteration from 0 to `boot_it` iterations. Iteration 0 is the results from the full dataset (not bootstrapped).
* `row_idxs`: the row indexes for the bootstrapped sample for that iteration. To save space, the row indexes are returned rather than the full datasets. So, for example, iteration i's bootstrap sample can be reproduced by `data[ModelBoot_obj@boot_data$row_idxs[[2]], ]` where `data` is the dataset and `ModelBoot_obj` is the result of `ModelBoot()`.
* `model`: the model object trained on that iteration.
* `ale`: the results of `ALE()` on that iteration.
* `tidy`: the results of `broom::tidy(model)` on that iteration.
* `stats`: the results of `broom::glance(model)` on that iteration.
* `perf`: performance measures on the entire dataset. These are the measures specified above for regression and classification models.

params Parameters used to calculate bootstrapped data. Most of these repeat the arguments passed
to ModelBoot(). These are either the values provided by the user or used by default if the user
did not change them but the following additional objects created internally are also provided:

* `y_cats`: same as `ALE@params$y_cats` (see documentation there).
* `y_type`: same as `ALE@params$y_type` (see documentation there).
* `model`: same as `ALE@params$model` (see documentation there).
* `data`: same as `ALE@params$data` (see documentation there).

Full-model bootstrapping

No modelling results, with or without ALE, should be considered reliable without appropriate val-
idation. For ALE, both the trained model itself and the ALE that explains the trained model must
be validated. ALE must be validated by bootstrapping. The trained model might be validated ei-
ther by cross-validation or by bootstrapping. For ALE that explains trained models that have been
developed by cross-validation, it is sufficient to bootstrap just the training data. That is what the
ALE object does with its boot_it argument. However, unvalidated models must be validated by
bootstrapping them along with the calculation of ALE; this is what the ModelBoot object does with
its boot_it argument.

ModelBoot() carries out full-model bootstrapping to validate models. Specifically, it:

• Creates multiple bootstrap samples (default 100; the user can specify any number);
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• Creates a model on each bootstrap sample;

• Calculates overall model statistics, variable coefficients, and ALE values for each model on
each bootstrap sample;

• Calculates the mean, median, and lower and upper confidence intervals for each of those
values across all bootstrap samples.

References

Okoli, Chitu. 2023. “Statistical Inference Using Machine Learning and Classical Techniques Based
on Accumulated Local Effects (ALE).” arXiv. doi:10.48550/arXiv.2310.09877.<

Efron, Bradley, and Robert Tibshirani. "Bootstrap methods for standard errors, confidence intervals,
and other measures of statistical accuracy." Statistical science (1986): 54-75. doi:10.1214/ss/
1177013815

Examples

# attitude dataset
attitude

## ALE for generalized additive models (GAM)
## GAM is tweaked to work on the small dataset.
gam_attitude <- mgcv::gam(rating ~ complaints + privileges + s(learning) +

raises + s(critical) + advance,
data = attitude)

summary(gam_attitude)

# Full model bootstrapping
# Only 4 bootstrap iterations for a rapid example; default is 100
# Increase value of boot_it for more realistic results
mb_gam <- ModelBoot(

gam_attitude,
boot_it = 4

)

# If the model is not standard, supply model_call_string with 'data = boot_data'
# in the string instead of the actual dataset name (in addition to the actual dataset
# as the 'data' argument directly to the `ModelBoot` constructor).
mb_gam <- ModelBoot(

gam_attitude,
data = attitude, # the actual dataset
model_call_string = 'mgcv::gam(
rating ~ complaints + privileges + s(learning) +

raises + s(critical) + advance,
data = boot_data # required for model_call_string

)',
boot_it = 4

)

# Model statistics and coefficients
mb_gam@model_stats

doi:10.48550/arXiv.2310.09877
doi:10.1214/ss/1177013815
doi:10.1214/ss/1177013815


26 plot.ALEPlots

mb_gam@model_coefs

# Plot ALE
plot(mb_gam)

# Retrieve ALE data
get(mb_gam, type = 'boot') # bootstrapped
get(mb_gam, type = 'single') # full (unbootstrapped) model
# See get.ALE() for other options

plot.ALE plot method for ALE objects

Description

This plot method simply calls the constructor for an ALEPlots object.

Arguments

x ALE object.

... Arguments passed to ALEPlots()

plot.ALEPlots Plot method for ALEPlots object

Description

Plot an ALEPlots object.

Arguments

x An object of class ALEPlots.

max_print integer(1). The maximum number of plots that may be printed at a time. 1D
plots and 2D are printed on separate pages, so this maximum applies separately
to each dimension of ALE plots, not to all dimensions combined.

... Arguments to pass to patchwork::wrap_plots()

Value

Invisibly returns x.
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plot.ModelBoot plot method for ModelBoot objects

Description

This plot method simply calls the constructor for an ALEPlots object.

Arguments

x ModelBoot object.

... Arguments passed to ALEPlots()

print.ALE print Method for ALE object

Description

Print an ALE object.

Arguments

x An object of class ALE.

... Additional arguments (currently not used).

Value

Invisibly returns x.

Examples

lm_cars <- stats::lm(mpg ~ ., mtcars)
ale_cars <- ALE(lm_cars, p_values = NULL)
print(ale_cars)
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print.ALEPlots Print method for ALEPlots object

Description

Print an ALEPlots object by calling plot().

Arguments

x An object of class ALEPlots.

max_print See documentation for plot.ALEPlots()

... Additional arguments (currently not used).

Value

Invisibly returns x.

print.ModelBoot print method for ModelBoot object

Description

Print a ModelBoot object.

Arguments

x An object of class ModelBoot.

... Additional arguments (currently not used).

Value

Invisibly returns x.

Examples

lm_cars <- stats::lm(mpg ~ wt + gear, mtcars)
mb <- ModelBoot(lm_cars, boot_it = 2, ale_p = NULL)
print(mb)
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resolve_x_cols Resolve x_cols and exclude_cols to their standardized format

Description

Resolve x_cols and exclude_cols to their standardized format of x_cols to specify which 1D
and 2D ALE elements are required. This specification is used throughout the ALE package.
x_cols specifies the desired columns or interactions whereas exclude_cols optionally specifies
any columns or interactions to remove from x_cols. The result is x_cols – exclude_cols, giving
considerable flexibility in specifying the precise columns desired.

Usage

resolve_x_cols(x_cols, col_names, y_col, exclude_cols = NULL, silent = FALSE)

Arguments

x_cols character, list, or formula. Columns and interactions requested in one of the
special x_cols formats. x_cols variable names not found in col_names will
error. See examples.

col_names character. All the column names from a dataset. All values in x_cols must
be contained among the values in col_names. For interaction terms in x_cols,
e.g., "a:b", the individual variable names must be contained in col_names, e.g,
c("a", "b").

y_col character(1). The y outcome column. If found in any x_cols value, it will be
silently removed.

exclude_cols Same possible formats as x_cols. Columns and interactions to exclude from
those requested in x_cols. exclude_cols values not found in col_names will
be ignored with a message (which can be silenced with silent).

silent logical(1). If TRUE, no message will be given; in particular, x_cols not found in
col_names will be silently ignored. Default is FALSE. Regardless, warnings and
errors are never silenced (e.g, invalid x_cols formats will still report errors).

Value

x_cols in canonical format, which is always a list with two elements, d1 and d2. Each element is a
character vector with each requested column for 1D ALE (d1) or 2D ALE interaction pair (d2). If
either dimension is empty, its value is an empty character, character().

See examples for details.

x_cols format options

The x_cols argument determines which predictor variables and interactions are included in the
analysis. It supports multiple input formats:

• Character vector: Users can explicitly specify 1D terms and 2D ALE interactions, e.g.,
c("a", "b", "a:b", "a:c").
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• Formula (~): Allows specifying variables and interactions in formula notation (e.g., ~ a + b +
a:b), which is automatically converted into a structured format. The outcome term is optional
and will be ignored regardless. So, ~ a + b + a:b produces results identical to whatever ~ a +
b + a:b.

• List format:

– The basic list format is a list of character vectors named d1 for 1D ALE terms, d2 for 2D
interactions, or both. For example, list(d1 = c("a", "b"), d2 = c("a:b", "a:c"))

– Boolean selection for an entire dimension:

* list(d1 = TRUE) selects all available variables for 1D ALE, excluding y_col.

* list(d2 = TRUE) selects all possible 2D interactions among all columns in col_names,
excluding y_col.

– A character vector of 1D terms only named d2_all may be used to include all 2D interac-
tions that include the specified 1D terms. For example, specifying list(d2_all = "a")
would select c("a:b", "a:c", "a:d"), etc. This is in addition to any terms requested in
the d1 or d2 elements.

• NULL (or unspecified): If x_cols = NULL, no variables are selected.

The function ensures all variables are valid and in col_names, providing informative messages
unless silent = TRUE. And regardless of the specification format, the result will always be stan-
dardized in the format specified in the return value. Note that y_col is not removed if included in
x_cols. However, a message alerts when it is included, in case it is a mistake.

Run examples for details.

Examples

## Sample data
set.seed(0)
df <- data.frame(

y = runif(10),
a = sample(letters[1:3], 10, replace = TRUE),
b = rnorm(10),
c = sample(1:5, 10, replace = TRUE)

)
col_names <- names(df)
y_col <- "y" # Assume 'y' is the outcome variable

## Examples with just x_cols to show different formats for specifying x_cols
## (same format for exclude_cols)

# Character vector: Simple ALE with no interactions
resolve_x_cols(c("a", "b"), col_names, y_col)

# Character string: Select just one 1D element
resolve_x_cols("c", col_names, y_col)

# list of 1- and 2-length character vectors: specify precise 1D and 2D elements desired
resolve_x_cols(c('a:b', "c", 'c:a', "b"), col_names, y_col)
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# Formula: Converts to a list of individual elements
resolve_x_cols(~ a + b, col_names, y_col)

# Formula with interactions (1D and 2D).
# This format is probably more convenient if you know precisely which terms you want.
# Note that the outcome on the left-hand-side is always silently ignored.
resolve_x_cols(whatever ~ a + b + a:b + c:b, col_names, y_col)

# List specifying d1 (1D ALE)
resolve_x_cols(list(d1 = c("a", "b")), col_names, y_col)

# List specifying d2 (2D ALE)
resolve_x_cols(list(d2 = 'a:b'), col_names, y_col)

# List specifying both d1 and d2
resolve_x_cols(list(d1 = c("a", "b"), d2 = 'a:b'), col_names, y_col)

# d1 as TRUE (select all columns except y_col)
resolve_x_cols(list(d1 = TRUE), col_names, y_col)

# d2 as TRUE (select all possible 2D interactions)
resolve_x_cols(list(d2 = TRUE), col_names, y_col)

# d2_all: Request all 2D interactions involving a specific variable
resolve_x_cols(list(d2_all = "a"), col_names, y_col)

# NULL: No variables selected
resolve_x_cols(NULL, col_names, y_col)

## Examples of how exclude_cols are removed from x_cols to obtain various desired results

# Exclude one column from a simple character vector
resolve_x_cols(

x_cols = c("a", "b", "c"),
col_names = col_names,
y_col = y_col,
exclude_cols = "b"

)

# Exclude multiple columns
resolve_x_cols(

x_cols = c("a", "b", "c"),
col_names = col_names,
y_col = y_col,
exclude_cols = c("a", "c")

)

# Exclude an interaction term from a formula input
resolve_x_cols(

x_cols = ~ a + b + a:b,
col_names = col_names,
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y_col = y_col,
exclude_cols = ~ a:b

)

# Exclude all columns from x_cols
resolve_x_cols(

x_cols = c("a", "b", "c"),
col_names = col_names,
y_col = y_col,
exclude_cols = c("a", "b", "c")

)

# Exclude non-existent columns (should be ignored)
resolve_x_cols(

x_cols = c("a", "b"),
col_names = col_names,
y_col = y_col,
exclude_cols = "z"

)

# Exclude one column from a list-based input
resolve_x_cols(

x_cols = list(d1 = c("a", "b"), d2 = c("a:b", "a:c")),
col_names = col_names,
y_col = y_col,
exclude_cols = list(d1 = "a")

)

# Exclude interactions only
resolve_x_cols(

x_cols = list(d1 = c("a", "b", "c"), d2 = c("a:b", "a:c")),
col_names = col_names,
y_col = y_col,
exclude_cols = list(d2 = 'a:b')

)

# Exclude everything, including interactions
resolve_x_cols(

x_cols = list(d1 = c("a", "b", "c"), d2 = c("a:b", "a:c")),
col_names = col_names,
y_col = y_col,
exclude_cols = list(d1 = c("a", "b", "c"), d2 = c("a:b", "a:c"))

)

# Exclude a column implicitly removed by y_col
resolve_x_cols(

x_cols = c("y", "a", "b"),
col_names = col_names,
y_col = "y",
exclude_cols = "a"

)

# Exclude entire 2D dimension from x_cols with d2 = TRUE
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resolve_x_cols(
x_cols = list(d1 = TRUE, d2 = c("a:b", "a:c")),
col_names = col_names,
y_col = y_col,
exclude_cols = list(d1 = c("a"), d2 = TRUE)

)

subset.ALEPlots subset method for ALEPlots object

Description

Subset an ALEPlots object to produce another ALEPlots object only with the subsetted x_cols
variables and interactions, as specified in the return value description.
See get.ALE() for explanation of parameters not described here.

Arguments

x An object of class ALEPlots.
... not used. Inserted to require explicit naming of subsequent arguments.
include_eff logical(1). x_cols and exclude_cols specify precisely which variables to in-

clude or exclude in the subset. However, multivariable plots like ALE effects
plot are ambiguous because they cannot be subsetted to remove some existing
variables. include_eff = TRUE (default) includes the ALE effects plot in the
subset rather than dropping it, if it is available.

Value

An ALEPlots object reduced to cover only variables and interactions specified by x_cols and
exclude_cols. This is different from get.ALEPlots(), which returns a list of ggplot objects
and loses the special ALEPlots behaviour like plotting, printing, and summarizing multiple plots.

summary.ALEPlots summary method for ALEPlots object

Description

Present concise summary information about an ALEPlots object.

Arguments

object An object of class ALEPlots.
... Not used

Value

Summary string.



34 var_cars

var_cars Multi-variable transformation of the mtcars dataset.

Description

This is a transformation of the mtcars dataset from R to produce a small dataset with each of
the fundamental datatypes: logical, factor, ordered, integer, double, and character. Most of the
transformations are obvious, but a few are noteworthy:

• The row names (the car model) are saved as a character vector.

• For the unordered factors, the country and continent of the car manufacturer are obtained
based on the row names (model).

• For the ordered factor, gears 3, 4, and 5 are encoded as ’three’, ’four’, and ’five’, respectively.
The text labels make it explicit that the variable is ordinal, yet the number names make the
order crystal clear.

Here is the adaptation of the original description of the mtcars dataset:

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption
and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

Usage

var_cars

Format

A tibble with 32 observations on 14 variables.

model character: Car model

mpg double: Miles/(US) gallon

cyl integer: Number of cylinders

disp double: Displacement (cu.in.)

hp double: Gross horsepower

drat double: Rear axle ratio

wt double: Weight (1000 lbs)

qsec double: 1/4 mile time

vs logical: Engine (0 = V-shaped, 1 = straight)

am logical: Transmission (0 = automatic, 1 = manual)

gear ordered: Number of forward gears

carb integer: Number of carburetors

country factor: Country of car manufacturer

continent factor: Continent of car manufacturer
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Note

Henderson and Velleman (1981) comment in a footnote to Table 1: ’Hocking (original transcriber)’s
noncrucial coding of the Mazda’s rotary engine as a straight six-cylinder engine and the Porsche’s
flat engine as a V engine, as well as the inclusion of the diesel Mercedes 240D, have been retained
to enable direct comparisons to be made with previous analyses.’

References

Henderson and Velleman (1981), Building multiple regression models interactively. Biometrics, 37,
391–411.
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