--- title: "Evaluation_sim_usage" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Evaluation_sim_usage} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE ) ``` ## Introduction The `evaluation_sim` function is used to evaluate the performance of group effect estimation algorithms under simulated conditions. This vignette demonstrates how to use the `evaluation_sim` function with example data provided in the package. --- ## Load the Required Library Ensure the `MUGS` package is loaded before running the example: ```{r setup} library(MUGS) ``` --- ## Load Example Data Load the example data required for the `evaluation_sim` function: ```{r load_data} data(pairs.rel.EV) data(U.2) ``` --- ## Run the Evaluation Simulation Run the `evaluation_sim` function to evaluate the performance based on the provided data: ```{r run_simulation} # Evaluate simulation evaluation_results <- evaluation.sim(pairs.rel.EV, U.2) ``` --- ## Examine the Output Explore the structure and key components of the output: ```{r examine_output} # View the structure of the output str(evaluation_results) # Display first few rows of the results cat("\nEvaluation Results (first 5 rows):\n") print(head(evaluation_results, 5)) ``` --- ## Notes 1. **Input Data**: Ensure that `pairs.rel.EV` and `U.2` are properly formatted and loaded before running the function. 2. **Output Structure**: The output typically includes evaluation metrics and processed results for further analysis. --- ## Summary This vignette demonstrated the use of the `evaluation_sim` function for evaluating group effect estimation. Customize the input data and analyze the output to assess the performance of your algorithms.