The CodeSiteEff_I2_par
function estimates site-specific
effects using input embeddings and penalization methods. This vignette
demonstrates how to utilize the function with appropriate input data and
parameters.
Ensure the MUGS
package is loaded before running the
example:
Load the required datasets for the example:
# Load required data
data(S.1)
data(S.2)
data(X.group.source)
data(X.group.target)
data(U.1)
data(U.2)
Set up the variables required for the CodeSiteEff_I2_par
function:
# Set parameters
n1 <- 100
n2 <- 100
p <- 5
# Ensure row and column names are consistent for matching
rownames(U.1) <- as.character(seq_len(nrow(U.1))) # "1" to "100"
rownames(U.2) <- as.character(seq(from = 51, length.out = nrow(U.2))) # "51" to "150"
# Align S.1 and S.2 with embeddings
rownames(S.1) <- rownames(U.1)
colnames(S.1) <- rownames(U.1)
rownames(S.2) <- rownames(U.2)
colnames(S.2) <- rownames(U.2)
# Get common codes
names.list.1 <- rownames(S.1)
names.list.2 <- rownames(S.2)
common_codes <- intersect(names.list.1, names.list.2)
n.common <- length(common_codes)
if (n.common == 0) stop("Error: No common codes found between source and target sites.")
full.name.list <- c(names.list.1, names.list.2)
# Initialize delta matrix
delta.int <- matrix(0, length(full.name.list), p)
rownames(delta.int) <- full.name.list
Run the CodeSiteEff_I2_par
function:
# Estimate site-specific effects
CodeSiteEff_l2_par.out <- CodeSiteEff_l2_par(
S.1 = S.1,
S.2 = S.2,
n1 = 100,
n2 = 100,
U.1 = U.1,
U.2 = U.2,
V.1= U.1,
V.2 = U.2,
delta.int = delta.int,
lambda.delta = 3000,
p=5,
common_codes = common_codes,
n.common = 50,
n.core=2)
#> Warning: package 'doSNOW' was built under R version 4.4.1
#> Loading required package: foreach
#> Warning: package 'foreach' was built under R version 4.4.1
#> Loading required package: iterators
#> Loading required package: snow
#>
#> Attaching package: 'snow'
#> The following objects are masked from 'package:parallel':
#>
#> closeNode, clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
#> clusterExport, clusterMap, clusterSplit, makeCluster, parApply,
#> parCapply, parLapply, parRapply, parSapply, recvData, recvOneData,
#> sendData, splitIndices, stopCluster
Explore the structure and key components of the output:
# View structure of the output
str(CodeSiteEff_l2_par.out)
#> List of 3
#> $ delta : num [1:200, 1:5] 0 0 0 0 0 0 0 0 0 0 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:200] "1" "2" "3" "4" ...
#> .. ..$ : NULL
#> $ V.1.new: num [1:100, 1:5] 0.206 1.437 0.28 0.71 -0.543 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:100] "1" "2" "3" "4" ...
#> .. ..$ : NULL
#> $ V.2.new: num [1:100, 1:5] 0.468 1.595 -0.152 -1.13 -0.165 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:100] "51" "52" "53" "54" ...
#> .. ..$ : NULL
# Print specific components of the result
cat("\nEstimated Effects (Delta):\n")
#>
#> Estimated Effects (Delta):
print(CodeSiteEff_l2_par.out$delta[1:5, 1:5]) # First 5 rows and columns of delta matrix
#> [,1] [,2] [,3] [,4] [,5]
#> 1 0 0 0 0 0
#> 2 0 0 0 0 0
#> 3 0 0 0 0 0
#> 4 0 0 0 0 0
#> 5 0 0 0 0 0
cat("\nRegularization Path:\n")
#>
#> Regularization Path:
print(CodeSiteEff_l2_par.out$path)
#> NULL
n1
, n2
, p
, and
lambda.delta
to test different scenarios.S.1
, S.2
, U.1
, U.2
,
etc.) are correctly loaded and aligned.This vignette demonstrated how to use the
CodeSiteEff_l2_par
function for estimating site-specific
effects. Adjust input parameters and datasets to test different
scenarios and interpret the output components for your analysis.