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Abstract

This vignette describes and shows how the methodology proposed by Mrkvička, Kraft,
Blažek, and Myllymäki (2023) for detecting hotspots on a linear network can be performed
using the R package GET (Myllymäki and Mrkvička 2024).
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1. Practical description of hotspots computation

The Ąrst step involves import data to R. The crashes are recorded as a point pattern, thus
x and y coordinates together with window range must be provided. The same holds for
crossroads that forms the vertices of the linear network. The edges of the linear network are
provided in the form of matrix, where Ąrst column corresponds to the order of the crossroad
where the edge starts and the second column corresponds to the order of the ending crossroad.
Further, the covariate can be imported to R from tiff or raster format.

When all Ąles are prepared, the analysis can move to R with use of spatstat, GET and
parallel packages. This vignette provides an example of hotspots detection that can be easily
customized.
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1.1. Estimating Poisson point pattern

The function pois.lppm(), can be used to estimate the inhomogeneous Poisson point process
model on linear network. This function provides the firstordermodel, i.e. the regression
model of dependence of crashes on the spatial covariates, EIP, i.e. estimated inhomogeneous
intensity from the data and secondorder, i.e. estimation of the inhomogeneous K-function.
The plot of the secondorder provides diagnostics, if the model is adequate for the data.
If the estimated K-function lies close to the theoretical line, the data does not report any
clustering, and the function hotspots.poislpp() can be used for Ąnal hotspots detection.
If the estimated K-function does not lie close to the theoretical line, and it is above, the
data report clustering, and the a clustered point pattern model must be Ątted to the data
and hotspots detected using this clustered model instead. The important input parameters
to be speciĄed for the function hotspots.poislpp() are PP, i.e., the point pattern used for
estimation, formula, i.e., the linear regression formula speciĄed as usually in R having PP on
the right hand side of the formula (i.e., as the response variable), data, i.e., the object from
which the formula takes the data.

1.2. Estimating Matérn cluster point pattern

The function MatClust.lppm(), can be used to estimate the Matérn cluster point pattern with
inhomogeneous cluster centers on linear network. This function provides the same outputs
as the pois.lppm() and further estimated parameters α and R. The secondorder provides
again the diagnostics for checking if the clustered model is appropriate. The sample K-
function must be close to the K-function of the estimated model (green line). If it is not
the case the searching grid for parameters α and R that is input in the function must be
manipulated to get the a closer result. If the estimated model is adequate one can proceed
to the hotspot detection with the use of the function hotspots.MatClustlpp(). Remark
here, that for the estimation of the second order structure a smaller data can be used than
for the estimation of the Ąrst order structure in order to save the computation time, since
the second order is a local characteristics. Thus the input to this function can contain, in
addition to the full data in PP that is used for Ąrst order estimation, a subwindow subwin to
specify a smaller part of the full data for second order estimation. Furthermore, valpha, i.e.,
vector of proposed alphas which should be considered in the optimization, vR, i.e., vector of
proposed Rs which should be considered in the optimization must be provided. The user can
also specify how many cores should be used in the computation by parameter ncores.

1.3. Hotspot detection under the Poisson assumption

If the Poisson assumption is checked, the hotspots can be detected using the function hotspots.poislpp().
The plot of results contains the locations of determined hotspots together with their sizes.
A parameter sigma must be provided in this function. It determines the bandwidth of the
kernel used in the inhomogeneous intensity estimation. This parameter should be carefully
selected with respect to the size of the window. It represents how much smoothing is applied
on the intensity, it is too big, the inhomogeneity will be blurred away. If it is too small,
the intensity will react on every event and the inhomogeneity will be too crazy. The nsim

parameter speciĄes the number of simulations to perform the envelope. It should be as large
as possible. Usually, the default of 10000 is Ąne. The argument ncores can be used to specify
how many cores should be used for the computation.
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1.4. Hotspot detection under the Matérn cluster assumption

If the Matérn cluster process was estimated and the Matérn cluster assumption was checked,
the hotspots can be detected using the function hotspots.MatClustlpp(). This function
has the same parameters as the previous one. Moreover, the estimated parameters α and R

from MatClust.lppm() must be provided.

2. R preparations

Loading required packages and setting a ggplot2 theme for images.

R> library("GET")

R> library("spatstat")

R> library("spatstat.linnet")

R> library("spatstat.Knet")

R> library("ggplot2")

R> library("parallel")

R> theme_set(theme_bw(base_size = 9))

3. Data

Mrkvička et al. (2023) worked with the database of road crashes reported to the Police in the
Czech Republic from 1 January 2016 to 31 December 2020. Here we show the methodology
for a subpattern of this full data set. The GET package provides a data object roadcrash

that has 7700 road crashes lying on a linear network with 269 vertices and 354 lines.

Load the road crash data from GET:

R> data("roadcrash")

R> win <- owin(xrange = roadcrash$xrange,

yrange = roadcrash$yrange)

R> X <- ppp(x = roadcrash$x, y = roadcrash$y, window = win)

R> Vertices.pp <- ppp(x = roadcrash$Vertices.x,

y = roadcrash$Vertices.y,

window=win)

R> L <- linnet(vertices=Vertices.pp,

edges = roadcrash$Edges)

R> PPfull <- lpp(X, L)

R> roadcrash$Traffic <- im(roadcrash$Traffic,

xrange = roadcrash$xrange,

yrange = roadcrash$yrange)

R> roadcrash$ForestDensity <- im(roadcrash$ForestDensity,

xrange = roadcrash$xrange,

yrange = roadcrash$yrange)

R> roadcrash$BuildingDensity <- im(roadcrash$BuildingDensity,

xrange = roadcrash$xrange,

yrange = roadcrash$yrange)



4 GET: Hotspot detection

A part of the analysis, as will be described below, uses a subset of the roadcrash data, because
the computations of inhomogeneous K-function and density can be rather computational.

Here we deĄne the subwindow and plot the pattern living in the subwindow.

R> subwin <- owin(c(-760000, -740000), c(-1160000, -1140000))

R> plot(PPfull[, subwin], main="Road crashes: subpattern")

Road crashes: subpattern

Mrkvička et al. (2023) had a total of 9 spatially deĄned covariates. In our example here and
available in roadcrash in GET are three covariates, namely average traffic volume (number
of vehicles per 24 hours), forest density and building density in the cell.

The following plots show these covariates in the subwindow deĄned above.

R> par(mfrow=c(1,3))

R> plot(roadcrash$Traffic[subwin], main="Traffic")

R> plot(roadcrash$ForestDensity[subwin], main="Forest density")

R> plot(roadcrash$BuildingDensity[subwin], main="Building density")
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4. Non-parametric intensity estimate

A non-parametric density estimate of the point pattern on a linear network can be obtained
using the function density.lpp() of the spatstat package.

A parameter sigma must be provided in this function. It is the same parameter sigma that
was already discussed above in Section 1.3, i.e., it determines the bandwidth of the kernel
used in the inhomogeneous intensity estimation. The argument distance speciĄes what type
of kernel to use in the linear network. In our hotspot detection, we use here a two-dimension
kernel speciĄed by distance="euclidean" because computation of the density with this
kernel is relatively fast. We set the smoothing bandwidth sigma that small that two roads
are very unlikely closer than two times sigma apart from each other. Thus, the intensity
estimate at a certain location on the linear network is computed merely from the crashes at
that location.

R> densi <- density.lpp(PPfull, sigma = 250, distance="euclidean")

R> densi2 <- density.lpp(PPfull[, subwin], sigma = 250, distance="euclidean")

R> par(mfrow=c(1,3))

R> plot(densi, main="Intensity of crashes: full window")

R> plot(densi2, main="Intensity of crashes: subwindow")
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5. Fitting the inhomogeneous Poisson process

The simplest point process model for road crashes is the (inhomogeneous) Poisson process
with intensity

ρβ(u) = κ exp(z(u)βT ), u ∈ L, (1)

where L is a linear network, z = (z1, . . . , zk) is a vector of covariates and β = (β1, . . . , βk)
is a regression parameter. This process can be Ątted using the spatstat package. We Ąt the
model using the full roadcrash data.

The function pois.lppm() both Ąts the model for the intensity as well as provides predicted
point process intensity and the inhomogeneous K-function estimated from a given point
pattern PP using the estimated intensity surface. (This is rather fast, taking a bit more than
10 seconds on a normal laptop; system.time is used to take the time only.)

R> myformula <- PP ~ Traffic + ForestDensity + BuildingDensity

R> system.time(

Poi <- pois.lppm(PP=PPfull, formula=myformula, data=roadcrash)

)

user system elapsed

12.83 0.05 12.92

Both the predicted point process intensity and the inhomogeneous K-function with theoretical
Poisson K function can be plotted:
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R> par(mfrow=c(1,2))

R> plot(Poi$EIP, main="Predicted intensity")

R> plot(Poi$secondorder, main="Inhomog. K function")
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Here the inhomogeneous K-function estimated from the data lies above the theoretical line
for the Poisson process and suggests clustering of points.

6. Fitting the Matern cluster process on a linear network

Mrkvička et al. (2023) considered instead of the Poisson process the Matern cluster point
process with inhomogeneous cluster centers. This process is more suitable for clustered data.
It can be estimated in two steps according to its construction following Mrkvička, Muška, and
Kubečka (2014). In Ąrst step, the Ąrst order intensity function is estimated through Poisson
likelihood. This was done above, i.e., the object EIP contains the estimated intensity. In
second step, the second order interaction parameters α (mean number of points in a cluster)
and R (cluster radius) are estimated through minimum contrast method. Unfortunately,
working with cluster processes on linear networks is rather consuming and therefore they are
currently not covered by the spatstat package. Thus, we have used the inhomogeneous K-
function and the minimum contrast and grid search methods to Ąnd the optimal parameters.
We implemented functions for simulating the Matern cluster process on a linear network LL

with pre-speciĄed centers (function rMatClustlpp) and for Ątting the Matern cluster process
on a point pattern on a linear network (function MatClust.lppm).

In the procedure, we estimate the parameters R and α of the Matern cluster process using
the inhomogeneous K-function (with the estimated Poisson process intensity). We consider
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a range of possible values of the parameters R and α. For each value of R and α, we compute
the difference of the observed K-function from the "theoretical" K-function of the model,
computed from the average of nsim (by default 10) simulation from the model. Simulations
are used, because the theoretical K-function is not known for the Matern cluster process on
the linear network. We then Ąnd out which of these possible values of parameters R and α

lead to the smallest difference between the observed and "theoretical" K-functions.

Remark here that the Ąrst order structure is estimated below from the full pattern PPfull

(provided to the MatClust.lppm() function in the argument PP), whereas the second order
structure is estimated from the pattern observed in the subwindow that is provided in the
argument subwin. The second order structure has a limited range; therefore, estimating it
only from the subpattern is useful for time saving.

R> valpha <- seq(5, 30, by=5)

R> vR <- seq(250, 2500, by=500)

R> myformula <- PP ~ Traffic + ForestDensity + BuildingDensity

R> system.time( # Took about 1,2 minutes on a laptop

MatCl <- MatClust.lppm(PP=PPfull, formula=myformula, subwin=subwin,

valpha=valpha, vR=vR, data=roadcrash, ncores = 1)

)

user system elapsed

65.30 1.67 67.21

These results can be viewed, by plotting the observed K (solid line) and theoretical Poisson
line (dashed line) and adding the K-function of the estimated Matern cluster process estimated
from nsim (here 10) simulations.

R> # The observed K, and theoretical Poisson line

R> plot(MatCl$secondorder, main="Inhomog. K function")

R> # The Matern Cluster process K from nsim (here 10) simulations

R> # with chosen values of alpha and R

R> lines(x=MatCl$secondorder$r, y=MatCl$MCsecondorder, col=3)
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The chosen parameter values are given in alpha and R.

R> MatCl$alpha

[1] 30

R> MatCl$R

[1] 1750

7. False discovery rate envelopes

To Ąnd the hotspots of road crashes that are not explained by the covariates, we Ąrst generate
nsim simulations from the Ątted Matérn cluster process and estimate the intensity for each
of the simulated patterns. We note that we estimate the intensity here similarly as above for
the observed pattern. This computation takes a bit of time (using 4 cores on a normal laptop
took about 25-30 minutes).

R> nsim <- 10000

R> system.time(

res <- hotspots.MatClustlpp(PP=PPfull, formula=myformula,

R=MatCl$R, alpha=MatCl$alpha,

data = roadcrash, sigma=250, nsim=nsim, ncores=4)

)
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The FDR envelope (Mrkvička and Myllymäki 2023) is computed within hotspots.MatClustlpp()

using the function fdr_envelope() of the GET package. Because we are only interested in lo-
cations where the intensity is higher than expected, the test is done alternative to "greater".

R> plot(res) + scale_radius(range = 0.5 * c(1, 6))
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The size of the cluster is indicated by the circles. The circle radius is proportional to the size
of the deviation of the observed intensity from the upper bound of the FDR envelope divided
by the difference of the upper FDR envelope and the centre of the envelope. Thus, the size
is a measure of relative exceedance.
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